【题目】如图1,正方形ABCD中,点E、F分别在边DC、AD上,且AE⊥BF于G. ![]()
(1)求证:BF=AE;
(2)如图2,当点E在DC延长线上,点F在AD延长线上时,(1)中结论是否成立?(直接写结论) ![]()
(3)在图2中,若点M、N、P、Q分别为四边形AFEB四条边AF、EF、EB、AB的中点,且AF:AD=4:3,求S四边形MNPQ:S正方形ABCD .
参考答案:
【答案】
(1)
解:∵四边形ABCD是正方形,
∴AB=BC=CD=AD,∠DAB=∠ADC=90°.
∴∠DAE+∠BAE=90°.
∵AE⊥BF,
∴∠AGB=90°,
∴∠GAB+∠GBA=90°,
∴∠DAE=∠ABG.
在△ABF和△DAE中,
,
∴△ABF≌△DAE(ASA),
∴BF=AE;
(2)
解:)结论成立 即AE=BF.
理由:∵四边形ABCD是正方形,
∴AB=BC=CD=AD,∠DAB=∠ADC=90°.
∴∠DAE+∠BAE=90°.
∵AE⊥BF,
∴∠AGB=90°,
∴∠GAB+∠GBA=90°,
∴∠DAE=∠ABG.
在△ABF和△DAE中,
,
∴△ABF≌△DAE(ASA),
∴BF=AE;
(3)
解:∵AF:AD=4:3,设AF=4a,AD=3a,
∴DF=a.
∵△ABF≌△DAE,
∴AF=DE,
∴AF﹣AD=DE﹣DC,
∴DF=CE,
∴CE=a.
∵点M、N、P、Q分别为四边形AFEB四条边AF、EF、EB、AB的中点,
∴MN是△AEF的中位线,MQ是△ABF的中位线,
∴MN=
AE,MN∥AE,MQ=
BF,MQ∥BF.
∴MN=MQ.∠MNP=∠NPQ=∠PQM=90°,
∴四边形MNPQ是正方形.
在Rt△ABF中,由勾股定理,得
BF=5a.
∴MN=MQ=
.
∴S四边形MNPQ=
.
∵S正方形ABCD=9a2,
∴S四边形MNPQ:S正方形ABCD=
:9a2=25:36.
答:S四边形MNPQ:S正方形ABCD=25:36.
【解析】(1)根据正方形的性质就可以求出△ABF≌△DAE,就可以得出结论;(2)根据正方形的性质就可以求出△ABF≌△DAE就可以得出BF=AE;(3)根据条件可以设AF=4a,AD=3a,就可以求出DF=CE=a,由勾股定理就可以求出AE,由中位线的性质就可以求出MN的值,表示出正方形MNPQ的面积,就可以求出结论.
【考点精析】认真审题,首先需要了解正方形的性质(正方形四个角都是直角,四条边都相等;正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角;正方形的一条对角线把正方形分成两个全等的等腰直角三角形;正方形的对角线与边的夹角是45o;正方形的两条对角线把这个正方形分成四个全等的等腰直角三角形).
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知:如图△ABC中,AB为⊙O的直径,BC切⊙O于点B,AC交⊙O与点F,点E在AC上,且∠EBC=
∠BAC,BE交⊙O于点D.
(1)求证:AB=AE;
(2)若AB=10,cos∠EBC=
,求线段BE和BC的长. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,DE∥BF,∠1与∠2互补.
(1)试说明:FG∥AB;
(2)若∠CFG=60°,∠2=150°,则DE与AC垂直吗?请说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】某物流公司要同时运输A、B两种型号的商品共13件,A型商品每件体积为2m3 , 每件质量为1吨;B型商品每件体积为0.8m3 , 每件质量为0.5吨,这两种型号商品体积之和不超过18.8m3 , 质量之和大于8.5吨.
(1)求A、B两种型号商品的件数共有几种可能?写出所有可能情况;
(2)若一件A型商品运费为200元,一件B型商品运费为180元.则(1)中哪种情况的运费最少?最少运费是多少? -
科目: 来源: 题型:
查看答案和解析>>【题目】已知如图,抛物线y=x2+bx+c过点A(3,0),B(1,0),交y轴于点C,点P是该抛物线上一动点,点P从C点沿抛物线向A点运动(点P不与点A重合),过点P作PD∥y轴交直线AC于点D.

(1)求抛物线的解析式;
(2)求点P在运动的过程中线段PD长度的最大值;
(3)△APD能否构成直角三角形?若能请直接写出点P坐标,若不能请说明理由;
(4)在抛物线对称轴上是否存在点M使|MA﹣MC|最大?若存在请求出点M的坐标,若不存在请说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】某校计划购买篮球、排球共20个,购买2个篮球,3个排球,共需花费190元;购买3个篮球的费用与购买5个排球的费用相同。
(1)篮球和排球的单价各是多少元?
(2)若购买篮球不少于8个,所需费用总额不超过800元.请你求出满足要求的所有购买方案,并直接写出其中最省钱的购买方案
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在正方形ABCD中,E是对角线BD上一点,且满足BE=BC.连接CE并延长交AD于点F,连接AE,过B点作BG⊥AE于点G,延长BG交AD于点H.在下列结论中:
①AH=DF;②∠AEF=45°;③S四边形EFHG=S△DEF+S△AGH;④△AEF≌△CDE

其中正确的结论有______ (填正确的序号)
相关试题