【题目】如图在Rt△OAB中,∠OAB=90°,OA=AB=6.
(1)请你画出将△OAB绕点O沿逆时针方向旋转90°,得到的△OA1B1;
(2)线段OA1的长度是______,∠AOB1的度数是______;
(3)连接AA1,求证:四边形OAA1B1是平行四边形.
![]()
参考答案:
【答案】(1)画图见解析;
(2)6,135°;
(3)证明见解析.
【解析】试题分析:(1)根据旋转中心为O,旋转方向逆时针,旋转角度90°得到点A,B的对应点A1,B1,顺次连接O, A1,B1,即可得到△OA1B1,
(2)根据旋转的性质可知,旋转图形的对应边,对应角都相等,
(3)根据平行四边形的判定定理”对边平行且相等的四边形是平行四边形”进行证明.
试题解析:
(1)解:△OA1B1如图所示,
(2)解:根据旋转的性质知,OA1=OA=6.
∵将△OAB绕点O沿逆时针方向旋转90°,得到的△OA1B1,
∴∠BOB1=90°,
∵在Rt△OAB中,∠OAB=90°,OA=AB=6,
∴∠BOA=∠OBA=45°,
∴∠AOB1=∠BOB1+∠BOA=90°+45°=135°,即∠AOB1的度数是135°,
故答案是:6,135°,
(3)证明:根据旋转的性质知,△OA1B1≌△OAB,
则∠OA1B1=∠OAB=90°,A1B1=AB,
∵将△OAB绕点O沿逆时针方向旋转90°,得到的△OA1B1,
∴∠A1OA=90°,
∴∠OA1B1=∠A1OA,
∴A1B1∥OA,
又∵OA=AB,
∴A1B1=OA,
∴四边形OAA1B1是平行四边形.
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知AB=AD,∠1=∠2,要使△ABC≌△ADE,还需添加的条件是_________.(只需填一个)

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图①,已知AD∥BC,∠B=∠D=120°.
(1)请问:AB与CD平行吗?为什么?
(2)若点E、F在线段CD上,且满足AC平分∠BAE,AF平分∠DAE,如图②,求∠FAC的度数.
(3)若点E在直线CD上,且满足∠EAC=
∠BAC,求∠ACD:∠AED的值(请自己画出正确图形,并解答).

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图正比例函数y=k1x与反比例函数
交于点A,从A向x轴、y轴分别作垂线,所构成的正方形的面积为4.
(1)分别求出正比例函数与反比例函数的解析式;
(2)求出正、反比例函数图象的另外一个交点坐标。
(3)求△ODC的面积.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图①,平面直角坐标系XOY中,若A(0,a)、B(b,0)且(a﹣4)2+
=0,以AB为直角边作等腰Rt△ABC,∠CAB=90°,AB=AC.
(1)求C点坐标;
(2)如图②过C点作CD⊥X轴于D,连接AD,求∠ADC的度数;
(3)如图③在(1)中,点A在Y轴上运动,以OA为直角边作等腰Rt△OAE,连接EC,交Y轴于F,试问A点在运动过程中S△AOB:S△AEF的值是否会发生变化?如果没有变化,请直接写出它们的比值 (不需要解答过程或说明理由).
-
科目: 来源: 题型:
查看答案和解析>>【题目】为了预防流感,某学校在休息天用药薰消毒法对教室进行消毒.已知药物释放过程中,室内每立方米空气中含药量y(毫克)与时间x(分钟)成正比例;药物释放完毕后,y与x成反比例,如图所示.根据图中提供的信息,解答下列问题:
(1)写出从药物释放开始,y与x之间的两个函数关系式及相应的自变量取值范围;
(2)据测定,当空气中每立方米的含药量降低到0.45毫克以下时,学生方可进入教室,那么从药物释放开始,至少需要经过多少小时后,学生才能进入教室?

-
科目: 来源: 题型:
查看答案和解析>>【题目】计算:
(1)x4·x6-(x5)2;
(2)(-xy)2·x4y+(-2x2y)3;
(3)(1-3a)2-2(1-3a);
(4)(a+2b)(a-2b)-
b(a-8b).
相关试题