【题目】如图,矩形ABCD的两边AB=3,BC=4,P是AD上任一点,PE⊥AC于点E,PF⊥BD于点F.求PE+PF的值.
![]()
参考答案:
【答案】![]()
【解析】
首先连接OP.由矩形ABCD的两边AB=3,BC=4,可求得OA=OD=
,S△AOD=
S矩形ABCD然后由S△AOD=S△AOP+S△DOP=
OAPE+
ODPF=
OA(PE+PF)=
×(PE+PF)=3,求得答案.
![]()
解:连接OP,
∵矩形ABCD的两边AB=3,BC=4,
∴S矩形ABCD=ABBC=12,OA=OC,OB=OD,AC=BD,AC=
=5,
∴S△AOD=
S矩形ABCD=3,OA=OD=
,
∵PE⊥AC, PF⊥BD
∴S△AOD=S△AOP+S△DOP=
OAPE+
ODPF=
OA(PE+PF)=
×(PE+PF)=3,
∴PE+PF=
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,O为线段AB上一点,AB=6,OC为射线,且∠BOC=60°,动点P以每秒2个单位长度的速度从点O出发,沿射线OC做匀速运动,设运动时间为t秒.

(1)若AO=4,
①当t=1秒时,OP= , S△ABP=;
②当△ABP是直角三角形时,求t的值;
(2)如图2,若点O为AB中点,当AP=AB时,过点A作AQ∥BP,并使得∠QOP=∠B,求AQBP的值. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知二次函数y=(t+1)x2+2(t+2)x+
在x=0和x=2时的函数值相等.
(1)求二次函数的解析式;
(2)若一次函数y=kx+6的图象与二次函数的图象都经过点A(﹣3,m),求m和k的值;
(3)把二次函数的图象与x轴两个交点之间的部分记为图象G,把图象G向左平移n(n>0)个单位后得到的图象记为M,请结合图象回答:当(2)中得到的直线与图象M有公共点时,求n的取值范围.
-
科目: 来源: 题型:
查看答案和解析>>【题目】数学家华罗庚在一次出国访问途中,看到飞机上邻座的乘客阅读的杂志上有一道智力题:求59319的立方根.华罗庚脱口而出:39.众人感觉十分惊奇,请华罗庚给大家解读其中的奥秘.
你知道怎样迅速准确的计算出结果吗?请你按下面的问题试一试:
①
,又
,
,∴能确定59319的立方根是个两位数.②∵59319的个位数是9,又
,∴能确定59319的立方根的个位数是9.③如果划去59319后面的三位319得到数59,
而
,则
,可得
,由此能确定59319的立方根的十位数是3
因此59319的立方根是39.
(1)现在换一个数195112,按这种方法求立方根,请完成下列填空.
①它的立方根是_______位数.
②它的立方根的个位数是_______.
③它的立方根的十位数是__________.
④195112的立方根是________.
(2)请直接填写结果:
①
________.②
________. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,B、D为线段AH上两点,△ABC、△BDE和△DGH都是等边三角形,连结CE并延长交AH的延长线于点F,点G恰好在CF上,△ABC的外接圆⊙O交CF于点M.

(1)求证:AC 2=CMCF;
(2)若CM=
,MF=
,求圆O的半径长;
(3)设等边△ABC、△BDE、△DGH的面积分别为S1、S2、S3 , 请直接写出S1、S2、S3之间的等量关系. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知,如图,等边△ABC中,AD=DC,BF=FC,△BDE是等边三角形.求证:四边形AEBF是矩形.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在ABCD中,AE平分∠BAD,交BC于点E,BF平分∠ABC,交AD于点F,AE与BF交于点P,连接EF,PD.

(1)求证:四边形ABEF是菱形;
(2)若AB=4,AD=6,∠ABC=60°,求tan∠ADP的值.
相关试题