【题目】一般地,任何一个无限循环小数都可以写成分数形式,如0.
=0.777…,它的循环节有一位,设0.
=x,由0.
=0777…,可知,10x=7.777…,所以10x﹣x=7,得x=
.于是,得0.
=
,再如0.
=0.737373…,它的循环节有两位,设0.
=x,由0.
=0.737373…可知,100x=73.7373…,所以100x﹣x=73.解方程得x=
.于是,得0.
=
,类比上述方法,无限循环小数0.
3
化为分数形式为_____.
参考答案:
【答案】![]()
【解析】
仿照给出的无限小数写成分数的方法,把无限循环小数
化为分数.
解:设无限循环小数
=x,则1000x=735.735735…,
∴1000x﹣x=735,
解方程,得x=
=
.
故答案为:
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某年5月,我国南方某省A、B两市遭受严重洪涝灾害,1.5万人被迫转移,邻近县市C、D获知A、B两市分别急需救灾物资200吨和300吨的消息后,决定调运物资支援灾区.已知C市有救灾物资240吨,D市有救灾物资260吨,现将这些救灾物资全部调往A、B两市.已知从C市运往A、B两市的费用分别为每吨20元和25元,从D市运往往A、B两市的费用分别为每吨15元和30元,设从C市运往B市的救灾物资为x吨.
(1)请填写下表;
A
B
合计(吨)
C
x
240
D
260
总计(吨)
200
300
500
(2)设C、D两市的总运费为W元,求W与x之间的函数关系式,并写出自变量x的取值范围;
(3)经过抢修,从C市到B市的路况得到了改善,缩短了运输时间,运费每吨减少n元(N>0),其余路线运费不变,若C、D两市的总运费的最小值不小于10080元,求n的取值范围.
-
科目: 来源: 题型:
查看答案和解析>>【题目】下列事件中是不可能事件的是( )
A. 任意画一个四边形,它的内角和是

B. 若
,则
C. 一只不透明的袋子共装有3个小球,它们的标号分别为1、2、3,从中摸出一个小球,标号是“5”
D. 掷一枚质地均匀的硬币,落地时正面朝上
-
科目: 来源: 题型:
查看答案和解析>>【题目】中央电视台的《朗读者》节目激发了同学们的读书热情,为了引导学生“多读书,读好书”,某校对八年级部分学生的课外阅读量进行了随机调查,整理调查结果发现,学生课外阅读的本数量少的有
本,最多的有
本,并根据调查结果绘制了不完整的图表,如下所示:本数(本)
频数(人数)
频率












合计



(
)统计图表中的
__________,
__________,
__________.(
)请将频数分布直方图补充完整.(
)求所有被调查学生课外阅读的平均本数.(
)若该校八年级共有
名学生,请你估计该校八年级学生课外阅读
本及以上的人数. -
科目: 来源: 题型:
查看答案和解析>>【题目】综合与探究问题背景数学活动课上,老师将一副三角尺按图(1)所示位置摆放,分别作出∠AOC,∠BOD的平分线OM、ON,然后提出如下问题:求出∠MON的度数.
特例探究“兴趣小组”的同学决定从特例入手探究老师提出的问题,他们将三角尺分别按图2、图3所示的方式摆放,OM和ON仍然是∠AOC和∠BOD的角平分线.其中,按图2方式摆放时,可以看成是ON、OD、OB在同一直线上.按图3方式摆放时,∠AOC和∠BOD相等.
(1)请你帮助“兴趣小组”进行计算:图2中∠MON的度数为 °.图3中∠MON的度数为 °.
发现感悟
解决完图2,图3所示问题后,“兴趣小组”又对图1所示问题进行了讨论:
小明:由于图1中∠AOC和∠BOD的和为90°,所以我们容易得到∠MOC和∠NOD的和,这样就能求出∠MON的度数.
小华:设∠BOD为x°,我们就能用含x的式子分别表示出∠NOD和∠MOC度数,这样也能求出∠MON的度数.
(2)请你根据他们的谈话内容,求出图1中∠MON的度数.
类比拓展
受到“兴趣小组”的启发,“智慧小组”将三角尺按图4所示方式摆放,分别作出∠AOC、∠BOD的平分线OM、ON,他们认为也能求出∠MON的度数.
(3)你同意“智慧小组”的看法吗?若同意,求出∠MON的度数;若不同意,请说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,四边形ABCD是平行四边形,点A(1,0),B(4,1),C(4,3),反比例函数y=
的图象经过点D,点P是一次函数y=mx+3﹣4m(m≠0)的图象与该反比例函数图象的一个公共点;(1)求反比例函数的解析式;
(2)通过计算说明一次函数y=mx+3﹣4m的图象一定过点C;
(3)对于一次函数y=mx+3﹣4m(m≠0),当y随x的增大而增大时,确定点P的横坐标的取值范围,(不必写过程)

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,函数
的图象与函数
的图象交于点
,
.(1)求函数
的表达式;(2)观察图象,直接写出不等式
的解集;(3)若点
是
轴上的动点,当
周长最小时,求点
的坐标.
相关试题