【题目】如图,点C在线段AB上,线段AC=8cm,BC=4cm,点M、N分别是AC、BC的中点, 求:
![]()
(1) 线段MN的长度.
(2) 根据(1)的计算过程和结果,设AC+BC=
,其它条件不变,你能猜测出MN的长度吗?请证明你的猜测.
参考答案:
【答案】(1)6cm;(2)
;证明见解析
【解析】
(1)根据点M、N分别是AC、BC的中点,先求出MC、CN的长度,再利用MN=CM+CN即可求出MN的长度即可,
(2)根据点M、N分别是AC、BC的中点,可知CM=
AC,CN=
BC,再利用MN=CM+CN即可求出MN的长度.
解:(1)∵点M、N分别是AC、BC的中点,
∴CM=
AC=4cm,
CN=
BC=2cm,
∴MN=CM+CN=4+2=6cm,
(2)猜测MN=
a,
∵点M、N分别是AC、BC的中点,
∴CM=
AC,
CN=
BC,
∴MN=CM+CN=
(AC+BC)=
a.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某商店经销一种双肩包,已知这种双肩包的成本价为每个30元.市场调查发现,这种双肩包每天的销售量y(单位:个)与销售单价x(单位:元)有如下关系:y=-x+60(30≤x≤60).
设这种双肩包每天的销售利润为w元.
(1)求w与x之间的函数解析式;
(2)这种双肩包销售单价定为多少元时,每天的销售利润最大?最大利润是多少元?
(3)如果物价部门规定这种双肩包的销售单价不高于48元,该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为多少元?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知
,
两点在数轴上,点
在原点
的左边,表示的数为-15,点
在原点的右边,且
.点
以每秒3个单位长度的速度从点
出发向右运动.点
以每秒2个单位长度的速度从点
出发向右运动(点
,点
同时出发).
(1)数轴上点
对应的数是______,点
到点
的距离是______;(2)经过几秒,原点
是线段
的中点?(3)经过几秒,点
,
分别到点
的距离相等? -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,Rt△ABC中,∠ACB=90°,在以AB的中点O为坐标原点,AB所在直线为x轴建立的平面直角坐标系中,将△ABC绕点B顺时针旋转,使点A旋转至y轴的正半轴上的A′处,若AO=OB=2,则阴影部分面积为( )

A.
π B.
π﹣1 C.
+1 D. 
-
科目: 来源: 题型:
查看答案和解析>>【题目】为了提高学生书写汉字的能力,增强保护汉子的意识,某校举办了首届“汉字听写大赛”,学生经选拔后进入决赛,测试同时听写100个汉字,每正确听写出一个汉字得1分,本次决赛,学生成绩为
(分),且
,将其按分数段分为五组,绘制出以下不完整表格:组别
成绩
(分)频数(人数)
频率
一

2
0.04
二

10
0.2
三

14
b
四

a
0.32
五

8
0.16
请根据表格提供的信息,解答以下问题:
(1)本次决赛共有 名学生参加;
(2)直接写出表中a= ,b= ;
(3)请补全下面相应的频数分布直方图;

(4)若决赛成绩不低于80分为优秀,则本次大赛的优秀率为 。
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知有理数a,b在数轴上的位置如图所示.
(1)在数轴上标出﹣a,﹣b的位置,并比较a,b,﹣a,﹣b的大小:
(2)化简|a+b|+|a﹣b|.

-
科目: 来源: 题型:
查看答案和解析>>【题目】对于二次函数y=x2﹣3x+2和一次函数y=﹣2x+4,把y=t(x2﹣3x+2)+(1﹣t)(﹣2x+4)称为这两个函数的“再生二次函数”,其中t是不为零的实数,其图象记作抛物线L.现有点A(2,0)和抛物线L上的点B(﹣1,n),请完成下列任务:
【尝试】
(1)当t=2时,抛物线y=t(x2﹣3x+2)+(1﹣t)(﹣2x+4)的顶点坐标为 ;
(2)判断点A是否在抛物线L上;
(3)求n的值;
【发现】
通过(2)和(3)的演算可知,对于t取任何不为零的实数,抛物线L总过定点,坐标为 .
【应用】
二次函数y=﹣3x2+5x+2是二次函数y=x2﹣3x+2和一次函数y=﹣2x+4的一个“再生二次函数”吗?如果是,求出t的值;如果不是,说明理由.

相关试题