【题目】已知甲同学手中藏有三张分别标有数字
、
、1的卡片,乙同学手中藏有三张分别标有数字1、3、2的卡片,卡片外形相同.现从甲乙两人手中各任取一张卡片,并将它们的数字分别记为a,b.
(1)请你用树形图或列表法列出所有可能的结果;
(2)现制定一个游戏规则:若所选出的a,b能使得ax2+bx+1=0有两个不相等的实数根,则甲获胜;否则乙获胜.请问这样的游戏规则公平吗?请用概率知识解释.
参考答案:
【答案】
(1)解:画树状图如下:
![]()
由图可知,共有9种等可能的结果
(2)解:∵(a,b)的可能结果有(
,1)、(
,3)、(
,2)、(
,1)、(
,3)、(
,2)、(1,1)、(1,3)及(1,2),
∴当a=
,b=1时,△=b2﹣4ac=﹣1<0,此时ax2+bx+1=0无实数根,
当a=
,b=3时,△=b2﹣4ac=7>0,此时ax2+bx+1=0有两个不相等的实数根,
当a=
,b=2时,△=b2﹣4ac=2>0,此时ax2+bx+1=0有两个不相等的实数根,
当a=
,b=1时,△=b2﹣4ac=0,此时ax2+bx+1=0有两个相等的实数根,
当a=
,b=3时,△=b2﹣4ac=8>0,此时ax2+bx+1=0有两个不相等的实数根,
当a=
,b=2时,△=b2﹣4ac=3>0,此时ax2+bx+1=0有两个不相等的实数根,
当a=1,b=1时,△=b2﹣4ac=﹣3<0,此时ax2+bx+1=0无实数根,
当a=1,b=3时,△=b2﹣4ac=5>0,此时ax2+bx+1=0有两个不相等的实数根,
当a=1,b=2时,△=b2﹣4ac=0,此时ax2+bx+1=0有两个相等的实数根,
∴P(甲获胜)=P(△>0)=
,P(乙获胜)=1﹣
=
,
∴P(甲获胜)>P(乙获胜),
∴这样的游戏规则对甲有利,不公平
【解析】(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;(2)利用一元二次方程根的判别式,即可判定各种情况下根的情况,然后利用概率公式求解即可求得甲、乙获胜的概率,比较概率大小,即可确定这样的游戏规是否公平.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知关于x的一元二次方程x2-4x-m2=0
(1)求证:该方程有两个不等的实根;
(2)若该方程的两实根x1、x2满足x1+2x2=9,求m的值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在⊙O的内接四边形ACDB中,AB为直径,AC:BC=1:2,点D为弧AB的中点,BE⊥CD垂足为E.

(1)求∠BCE的度数;
(2)求证:D为CE的中点;
(3)连接OE交BC于点F,若AB=
,求OE的长度. -
科目: 来源: 题型:
查看答案和解析>>【题目】在网格中画对称图形.

(1)如图是五个小正方形拼成的图形,请你移动其中一个小正方形,重新拼成一个图形,使得所拼成的图形满足下列条件,并分别画在图①、图②、图③中(只需各画一个,内部涂上阴影);
①是轴对称图形,但不是中心对称图形;
②是中心对称图形,但不是轴对称图形;
③既是轴对称图形,又是中心对称图形.
(2)请你在图④的网格内设计一个商标,满足下列要求:
①是顶点在格点的凸多边形(不是平行四边形);
②是中心对称图形,但不是轴对称图形;
③商标内部涂上阴影. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知矩形ABCD的两条对角线相交于点O,过点A作AG⊥BD分别交BD、BC于点G、E.

(1)求证:BE2=EGEA;
(2)连接CG,若BE=CE,求证:∠ECG=∠EAC. -
科目: 来源: 题型:
查看答案和解析>>【题目】实数k取何值时,一元二次方程x2-(2k-3)x+2k-4=0:
(1)有两个正根;
(2)有两个异号根,并且正根的绝对值较大;
(3)一根大于3,一根小于3.
-
科目: 来源: 题型:
查看答案和解析>>【题目】(7分)某学校举行演讲比赛,选出了10名同学担任评委,并事先拟定从如下4个方案中选择合理的方案来确定每个演讲者的最后得分(满分为10分):
方案1:所有评委所给分的平均数,
方案2:在所有评委所给分中,去掉一个最高分和一个最低分.然后再计算其余给分的l平均数.
方案3:所有评委所给分的中位效.
方案4:所有评委所给分的众数.
为了探究上述方案的合理性.先对某个同学的演讲成绩进行了统计实验.下面是这个同学的得分统计图:

(1)分别按上述4个方案计算这个同学演讲的最后得分;
(2)根据(1)中的结果,请用统计的知识说明哪些方案不适台作为这个同学演讲的最后得分,并给出该同学的最后得分.
相关试题