【题目】实数k取何值时,一元二次方程x2-(2k-3)x+2k-4=0:
(1)有两个正根;
(2)有两个异号根,并且正根的绝对值较大;
(3)一根大于3,一根小于3.
参考答案:
【答案】(1)见解析。(2)见解析,(3)见解析。
【解析】
根据一元二次方程根与系数的关系,即韦达定理进行作答.(1)有两个正根时,x1>0,x2>0,即x1+x2
,x1x2
.由此得到k的取值.(2)有两个异号根,并且正根的绝对值较大,即x1>0,x2<0且|x1|>|x2|.即x1+x2
,x1x2
.由此得到k的取值.(3)一根大于3,一根小于3时,即x1>3,x2<3. 则k应满足条件:(x1-3)(x2-3)<0,即x1x2-3(x1+x2)+9<0. 由此得到k的取值.
解:∵Δ=[-(2k-3)]2-4(2k-4)=4k2-20k+25=(2k-5)2≥0,∴k取任何实数,方程都有两个实数根.设该方程的两根为x1,x2,则由韦达定理,得x1+x2=2k-3,x1x2=2k-4.
(1)若使x1>0,x2>0,则k应满足条件:
解得
,∴当k>2时,方程有两个正根.
(2)若使x1>0,x2<0且|x1|>|x2|,则k应满足条件:
解得
,∴当
<k<2时,两根异号,且正根的绝对值较大.
(3)若使x1>3,x2<3,则k应满足条件:(x1-3)(x2-3)<0,即x1x2-3(x1+x2)+9<0.∴2k-4-3(2k-3)+9<0,k>
.∴当k>
时,方程一根大于3,另一根小于3.
-
科目: 来源: 题型:
查看答案和解析>>【题目】在网格中画对称图形.

(1)如图是五个小正方形拼成的图形,请你移动其中一个小正方形,重新拼成一个图形,使得所拼成的图形满足下列条件,并分别画在图①、图②、图③中(只需各画一个,内部涂上阴影);
①是轴对称图形,但不是中心对称图形;
②是中心对称图形,但不是轴对称图形;
③既是轴对称图形,又是中心对称图形.
(2)请你在图④的网格内设计一个商标,满足下列要求:
①是顶点在格点的凸多边形(不是平行四边形);
②是中心对称图形,但不是轴对称图形;
③商标内部涂上阴影. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知甲同学手中藏有三张分别标有数字
、
、1的卡片,乙同学手中藏有三张分别标有数字1、3、2的卡片,卡片外形相同.现从甲乙两人手中各任取一张卡片,并将它们的数字分别记为a,b.
(1)请你用树形图或列表法列出所有可能的结果;
(2)现制定一个游戏规则:若所选出的a,b能使得ax2+bx+1=0有两个不相等的实数根,则甲获胜;否则乙获胜.请问这样的游戏规则公平吗?请用概率知识解释. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知矩形ABCD的两条对角线相交于点O,过点A作AG⊥BD分别交BD、BC于点G、E.

(1)求证:BE2=EGEA;
(2)连接CG,若BE=CE,求证:∠ECG=∠EAC. -
科目: 来源: 题型:
查看答案和解析>>【题目】(7分)某学校举行演讲比赛,选出了10名同学担任评委,并事先拟定从如下4个方案中选择合理的方案来确定每个演讲者的最后得分(满分为10分):
方案1:所有评委所给分的平均数,
方案2:在所有评委所给分中,去掉一个最高分和一个最低分.然后再计算其余给分的l平均数.
方案3:所有评委所给分的中位效.
方案4:所有评委所给分的众数.
为了探究上述方案的合理性.先对某个同学的演讲成绩进行了统计实验.下面是这个同学的得分统计图:

(1)分别按上述4个方案计算这个同学演讲的最后得分;
(2)根据(1)中的结果,请用统计的知识说明哪些方案不适台作为这个同学演讲的最后得分,并给出该同学的最后得分.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,四边形ABCD、BEFG均为正方形,连接AG、CE.
(1)求证:AG=CE;
(2)求证:AG⊥CE.

-
科目: 来源: 题型:
查看答案和解析>>【题目】某高中学校为使高一新生入校后及时穿上合身的校服,现提前对某校九年级(3)班学生即将所穿校服型号情况进行了摸底调查,并根据调查结果绘制了如图两个不完整的统计图(校服型号以身高作为标准,共分为6种型号).


根据以上信息,解答下列问题:
(1)该班共有多少名学生?其中穿175型校服的学生有多少人?
(2)在条形统计图中,请把空缺的部分补充完整;
(3)在扇形统计图中,请计算185型校服所对应扇形圆心角的大小;
(4)求该班学生所穿校服型号的众数和中位数.
相关试题