【题目】阅读理解:在以后你的学习中,我们会学习一个定理:直角三角形斜边上的中线等于斜边的一半,即:如图1,在Rt△ABC中,∠ACB=90°,若点D是斜边AB的中点,则CD=
AB.
灵活应用:如图2,△ABC中,∠BAC=90°,AB=6,AC=8,点D是BC的中点,连接AD,将△ACD沿AD翻折得到△AED,连接BE,CE.
(1)填空:AD= ;
(2)求证:∠BEC=90°;
(3)求BE.
![]()
参考答案:
【答案】(1)5;(2)证明见解析;(3)
.
【解析】
(1)利用勾股定理求出BC,再利用阅读理解中的结论即可解决问题;
(2)由将△ACD沿AD翻折得到△AED,推出CD=DE=BD,推出∠DBE=∠DEB,∠DCE=∠DEC,由∠DBF+∠DEB+∠DEC+∠DCE=180°,推出2∠DEB+2∠DEC=180°,可得∠DEB+∠DEC=90°;
(3)如图2中,延长AD交EC于H.由△ACB∽△HAC,
=
,求出AH,DH,再证明BE=2DH即可解决问题;
(1)解:在Rt△ABC中,∵∠BAC=90°,AB=6,AC=8,
∴BC=
=10,
∵BD=DC,
∴AD=
BC=5,
故答案为5;
(2)证明:∵将△ACD沿AD翻折得到△AED,
∴CD=DE=BD,
∴∠DBE=∠DEB,∠DCE=∠DEC,
∵∠DBF+∠DEB+∠DEC+∠DCE=180°,
∴2∠DEB+2∠DEC=180°,
∴∠DEB+∠DEC=90°,
∴∠BEC=90°;
(3)解:如图2中,延长AD交EC于H.
![]()
∵AE=AE,∠HAE=∠HAC,
∴AH⊥EC,
∴EH=CH,
∵BD=CD,
∴BE=2DH,
∵DA=DC,
∴∠ACB=∠CAH,
∵∠CAB=∠AHC=90°,
∴△ACB∽△HAC,
∴
=
,
∴
=
,
∴AH=
,
∴DH=AH﹣AD=
﹣5=
,
∴BE=2DH=
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知E、F分别为正方形ABCD的边BC、CD上的点,且∠EAF=45°.
(1)如图①求证:BE+DF=EF;
(2)连接BD分别交AE、AF于M、N,
①如图②,若AB=6
,BM=3,求MN.②如图③,若EF∥BD,求证:MN=CE.

-
科目: 来源: 题型:
查看答案和解析>>【题目】解决下面的问题
(一)如图,大正方形是由两个小正方形和两个长方形拼成的.

(1)请你用两个不同形式的代数式表示这个大正方形的面积;
代数式
: 代数式
: (2)由
可得到关于
的等式: (二)从边长为
的大正方形纸板中挖去一个边长为
的小正方形纸板后,将其裁成四个相同的等腰梯形(图甲),然后拼成一个平行四边形(图乙). 那么通过计算两个图形阴影部分的面积,可以验证成立的乘法公式是 (用字母表示) 
(3)计算
(直接写结果)
用上面的卡片,(数量自定)画出一个图形,来验证上面的整式运算(要求图中有长度和面积的标记)
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知:如图,在△ABC中,AB=AC,D为边BC上一点,以AB,BD为邻边作平行四边形ABDE,连接AD,EC.

(1)求证:△ADC≌△ECD;
(2)当点D在什么位置时,四边形ADCE是矩形,请说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】某童装专卖店在销售中发现,一款童装每件进价为80元,销售价为120元时,每天可售出20件,为了迎接“十一”国庆节,商店决定采取适当的降价措施,以扩大销售量,增加利润,经市场调查发现,如果每件童装降价1元,那么平均可多售出2件.
(1)设每件童装降价x元时,每天可销售件,每件盈利元;(用x的代数式表示)
(2)每件童装降价多少元时,平均每天赢利1200元.
(3)要想平均每天赢利2000元,可能吗?请说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】平面内的两条直线有相交和平行两种位置关系.

(1)如图1,若
,点
在
外部,则有
,又可证
,得
,将点
移到
内部,如图2,以上结论是否成立?若成立,说明理由;若不成立,则
之间有何数量关系?请证明你的结论; (2)在如图2中,将直线
绕点
逆时针方向旋转一定角度交直线
于点
如图3,则
之间有何数量关系? (不需证明);(3)根据(2)的结论,求如图4中
的度数. -
科目: 来源: 题型:
查看答案和解析>>【题目】某港口位于东西方向的海岸线上.“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16海里,“海天”号每小时航行12海里.它们离开港口一个半小时后相距30海里.如果知道“远航”号沿东北方向航行,能知道“海天”号沿哪个方向航行?为什么?

相关试题