【题目】如图所示,在△ABC中,点D. E. F分别在BC、AB、AC上,且BD=BE,CD=CF,∠EDF=50°.则∠A的度数为___________.
![]()
参考答案:
【答案】80°
【解析】
由∠EDF=50°可得∠BDE+∠CDF=130°,根据三角形内角和定理可求出∠B+∠C,就可求出∠A.
∵BD=BE,CD=CF,
∴∠BDE=∠BED,∠CDF=∠CFD.
∵∠BDE+∠EDF+∠CDF=180°,∠EDF=50°,
∴∠BDE+∠CDF=130°.
∵∠B+∠BDE+∠BED=180°,∠C+∠CDF+∠CFD=180°,
∴∠B+∠BDE+∠BED+∠C+∠CDF+∠CFD=360°.
∴∠B+∠C+2∠BDE+2∠CDF=360°.
∴∠B+∠C+260°=360°.
∴∠B+∠C=100°.
∵∠A+∠B+∠C=180°,
∴∠A=80°.
故答案为:80°.
-
科目: 来源: 题型:
查看答案和解析>>【题目】随着社会的发展,通过微信朋友圈发布自己每天行走的步数已经成为一种时尚.“健身达人”小陈为了了解他的好友的运动情况.随机抽取了部分好友进行调查,把他们6月1日那天行走的情况分为四个类别:A(0~5000步)(说明:“0~5000”表示大于等于0,小于等于5000,下同),B(5001~10000步),C(10001~15000步),D(15000步以上),统计结果如图所示:

请依据统计结果回答下列问题:
(1)本次调查中,一共调查了 位好友.
(2)已知A类好友人数是D类好友人数的5倍.
①请补全条形图;
②扇形图中,“A”对应扇形的圆心角为 度.
③若小陈微信朋友圈共有好友150人,请根据调查数据估计大约有多少位好友6月1日这天行走的步数超过10000步?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,等腰Rt△ABC中,∠ACB=90°,AC=BC,点D、E分别在边AB、CB上,CD=DE,∠CDB=∠DEC,过点C作CF⊥DE于点F,交AB于点G,
(1)求证:△ACD≌△BDE;
(2)求证:△CDG为等腰三角形.

-
科目: 来源: 题型:
查看答案和解析>>【题目】某年5月,我国南方某省A、B两市遭受严重洪涝灾害,1.5万人被迫转移,邻近县市C、D获知A、B两市分别急需救灾物资200吨和300吨的消息后,决定调运物资支援灾区.已知C市有救灾物资240吨,D市有救灾物资260吨,现将这些救灾物资全部调往A、B两市.已知从C市运往A、B两市的费用分别为每吨20元和25元,从D市运往往A、B两市的费用别为每吨15元和30元,设从D市运往B市的救灾物资为x吨.
(1)请填写下表
A(吨)
B(吨)
合计(吨)
C
240
D
x
260
总计(吨)
200
300
500
(2)设C、D两市的总运费为w元,求w与x之间的函数关系式,并写出自变量x的取值范围;
(3)经过抢修,从D市到B市的路况得到了改善,缩短了运输时间,运费每吨减少m元(m>0),其余路线运费不变.若C、D两市的总运费的最小值不小于10320元,求m的取值范围.
-
科目: 来源: 题型:
查看答案和解析>>【题目】在△ABC中,E、F分别为线段AB、AC上的点(不与A、B、C重合).
(1)如图1,若EF∥BC,求证:

(2)如图2,若EF不与BC平行,(1)中的结论是否仍然成立?请说明理由;
(3)如图3,若EF上一点G恰为△ABC的重心,
,求
的值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知数轴上有 A、B、C 三点,分别表示有理数-26,-10,10,动点 P 从 A 出发,以每秒 1 个 单位的速度向终点 C 移动,设点 P 移动时间为 t 秒.
(1)用含 t 的代数式表示 P 到点 A 和点C 的距离:PA= ,PC=
(2)当点 P 运动到 B 点时,点 Q 从 A 点出发,以每秒 3 个单位的速 度向 C 点运动,Q 点到达 C 点后,再立即以同样的速度返回,当点 P 运动到点 C 时,P、Q 两点运动停止,
①当 P、Q 两点运动停止时,求点 P 和点 Q 的距离;
②求当 t 为何值时 P、Q 两点恰好在途中相遇.

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知抛物线y=a(x﹣1)2过点(3,1),D为抛物线的顶点.
(1)求抛物线的解析式;
(2)若点B、C均在抛物线上,其中点B(0,
),且∠BDC=90°,求点C的坐标;(3)如图,直线y=kx+4﹣k与抛物线交于P、Q两点.
①求证:∠PDQ=90°;
②求△PDQ面积的最小值.

相关试题