【题目】如图,已知矩形ABCD的边长AB=3cm,BC=6cm.某一时刻,动点M从A点出发沿AB方向以1cm/s的速度向B点匀速运动;同时,动点N从D点出发沿DA方向以2cm/s的速度向A点匀速运动,问:
(1)经过多少时间,△AMN的面积等于矩形ABCD面积的九分之一?
(2)是否存在时刻t,使以A,M,N为顶点的三角形与△ACD相似?若存在,求t的值;若不存在,请说明理由.
![]()
参考答案:
【答案】(1)1秒或2秒;(2)
秒或
秒
【解析】试题分析:(1)设时间为x,根据速度表示出所涉及到的线段的长度,根据△AMN的面积等于矩形ABCD面积的
,列方程求解即可;(2)先假设相似,利用相似中的比例线段列出方程,有解的且符合题意的t值即可说明存在,反之则不存在.
试题解析:
(1)设经过x秒,△AMN的面积等于矩形ABCD面积的
,
由题意得DN=2x,AN=6-2x,AM=x,
∵矩形ABCD中AB=3,BC=6,
∴AD=BC=6,CD=AB=3,
矩形ABCD的面积为:ABAD=3×6=18,
△AMN的面积=
ANAM=
x(62x)=3xx2=
×18,
可得方程x2-3x+2=0,
解得x1=1,x2=2,
答:经过1秒或2秒,△AMN的面积等于矩形ABCD面积的
;
(2)由题意得DN=2t,AN=6-2t,AM=t,
若△NMA∽△ACD,
则有
,即
,
解得x=1.5,
若△MNA∽△ACD
则有
,即
,
解得x=2.4,
答:当t=1.5秒或2.4秒时,以A、M、N为顶点的三角形与△ACD相似.
-
科目: 来源: 题型:
查看答案和解析>>【题目】(1) 知识储备
①如图 1,已知点 P 为等边△ABC 外接圆的弧BC 上任意一点.求证:PB+PC= PA.
②定义:在△ABC 所在平面上存在一点 P,使它到三角形三顶点的距离之和最小,则称点 P 为△ABC
的费马点,此时 PA+PB+PC 的值为△ABC 的费马距离.
(2)知识迁移
①我们有如下探寻△ABC (其中∠A,∠B,∠C 均小于 120°)的费马点和费马距离的方法:
如图 2,在△ABC 的外部以 BC 为边长作等边△BCD 及其外接圆,根据(1)的结论,易知线段____的长度即为△ABC 的费马距离.
②在图 3 中,用不同于图 2 的方法作出△ABC 的费马点 P(要求尺规作图).
(3)知识应用
①判断题(正确的打√,错误的打×):
ⅰ.任意三角形的费马点有且只有一个(__________);
ⅱ.任意三角形的费马点一定在三角形的内部(__________).
②已知正方形 ABCD,P 是正方形内部一点,且 PA+PB+PC 的最小值为
,求正方形 ABCD 的边长.

-
科目: 来源: 题型:
查看答案和解析>>【题目】某校园文学社为了解本校学生对本社一种报纸四个版面的喜欢情况,随机抽取部分学生做了一次问卷调查,要求学生选出自己喜欢的一个版面,将调查数据进行了整理、绘制成部分统计图如下:

请根据图中信息,解答下列问题:
(1)第一版=____%,“第四版”对应扇形的圆心角为________°;
(2)请你补全条形统计图;
(3)若该校有1200名学生,请你估计全校学生中最喜欢“第三版”的人数.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,正方形 ABCD 的边长为 4,E 是 BC 的中点,点 P 在射线 AD 上,过点 P 作 PF⊥AE,垂足为 F.
(1)求证:△PFA∽△ABE;
(2)当点 P 在射线 AD 上运动时,设 PA=x,是否存在实数 x,使以 P,F,E 为顶点的三角形也与△ABE
相似?若存在,求出 x 的值;若不存在,说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】按下列程序进行运算(如图)

规定:程序运行到“判断结果是否大于244”为一次运算,若运算进行了5次才停止,则x的取值范围是 .
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在正方形ABCD中,AF=BE,AE与DF相交于点O.

(1)求证:△DAF≌△ABE;
(2)写出线段AE、DF的数量和位置关系,并说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,动点A从原点出发向数轴负方向运动,同时,动点B也从原点出发向数轴正方向运动,3秒后两点相距15个单位长度,已知动点A、B的速度比是1:4(速度单位:1单位长度/秒)。

(1)求两个动点运动的速度,并在数轴上标出A、B两点从原点出发运动3秒时的位置;
(2)若A、B两点分别从(1)中标出的位置同时向数轴负方向运动,问经过几秒,原点恰好处在两个动点的正中间?
相关试题