【题目】阅读下面材料,并解决问题:
(1)如图(1),等边△ABC内有一点P若点P到顶点A,B,C的距离分别为3,4,5欲求∠APB的度数,由于PA,PB不在一个三角形中,为了解决本题我们可以将△ABP绕顶点A旋转到△ACP′处,此时△ACP′≌△ABP这样,就可以利用全等三角形知识,将三条线段的长度转化到一个三角形中从而求出∠APB的度数.
请将下列解题过程补充完整。
∵△ACP′≌△ABP,
∴AP′= =3,CP′= =4,∠ =∠APB.
由题意知旋转角∠PA P′=60°,∴△AP P′为 三角形,
P P′=AP=3,∠A P′P=60°。
易证△P P′C为直角三角形,且∠P P′C=90°,
∴∠APB=∠AP′C=∠A P′P+∠P P′C= °+ °= °.
请你利用第(1)题的解答思想方法,解答下面问题:
已知如图(2),△ABC中,∠CAB=90°,AB=AC,E、F为BC上的点且∠EAF=45°,
求证:EF2=BE2+FC2.
![]()
参考答案:
【答案】(1)AP,BP,AP′C,等边,60,90,150;(2)见解析
【解析】
(1)根据旋转变换前后的两个三角形全等,全等三角形对应边相等,全等三角形对应角相等以及等边三角形的判定和勾股定理逆定理解答;
(2)把△ABE绕点A逆时针旋转90°得到△ACE′,根据旋转的性质可得AE′=AE,CE′=CE,∠CAE′=∠BAE,∠ACE′=∠B,∠EAE′=90°,再求出∠E′AF=45°,从而得到∠EAF=∠E′AF,然后利用“边角边”证明△EAF和△E′AF全等,根据全等三角形对应边相等可得E′F=EF,再利用勾股定理列式即可得证.
(1).AP,BP,AP′C,等边,60,90,150;
(2)把△ABE绕点A逆时针旋转90°得到△ACE′,
由旋转的性质得,AE′=AE,CE′=CE,∠CAE′=∠BAE,∠ACE′=∠B,∠EAE′=90°,
∵∠EAF=45°,
∴∠E′AF=∠CAE′+∠CAF=∠BAE+∠CAF=∠BAC﹣∠EAF=90°﹣45°=45°,
∴∠EAF=∠E′AF,
![]()
在△EAF和△E′AF中,
,
∴△EAF≌△E′AF(SAS),
∴E′F=EF,
∵∠CAB=90°,AB=AC,
∴∠B=∠ACB=45°,
∴∠E′CF=45°+45°=90°,
由勾股定理得,E′F2=CE′2+FC2,
即EF2=BE2+FC2.
-
科目: 来源: 题型:
查看答案和解析>>【题目】取一副三角板按图1拼接,固定三角板ADC,将三角板ABC绕点A依顺时针方向旋转一个大小为α的角 (0°<α≤45°)得到△ABC′,如图所示.试问:
(1)当α为多少度时,能使得图2中AB∥DC.
(2)连接BD,当0°<α≤45°时,探寻∠DBC′+∠CAC′+∠BDC值的大小变化情况,并给出你的证明.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,过边长为1的等边△ABC的边AB上一点P,作PE⊥AC于E,Q为BC延长线上一点,当PA=CQ时,连PQ交AC边于D,则DE的长为( )

A.
B.
C.
D. 不能确定 -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,将在Rt△ABC绕其锐角顶点A旋转90°得到在Rt△ADE,连接BE,延长DE、BC相交于点F,则有∠BFE=90°,且四边形ACFD是一个正方形.
(1)判断△ABE的形状,并证明你的结论;
(2)用含b代数式表示四边形ABFE的面积;
(3)求证:a2+b2=c2.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在矩形ABCD中,AB=3,AD=4,将矩形ABCD绕点D顺时针旋转90°得到矩形A′B′C′D′,则点B经过的路径与BA,AC′,C′B′所围成封闭图形的面积是多少?(结果保留π).

-
科目: 来源: 题型:
查看答案和解析>>【题目】(本题6分)如图,已知△ABC,∠C=Rt∠,AC<BC,D为BC上一点,且到A,B两点的距离相等.

(1)用直尺和圆规,作出点D的位置(不写作法,保留作图痕迹);
(2)连结AD,若∠B=37°,求∠CAD的度数.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC的三个顶点在边长为1的正方形网格中,已知A(﹣1,﹣1),B(4,﹣1),C(3,1).
(1)画出△ABC关于y轴对称的△A′B′C′(其中A′,B′,C′分别是A,B,C的对应点,不写画法);
(2)分别写出A′,B′,C′三点的坐标;
(3)请写出所有以AB为边且与△ABC全等的三角形的第三个顶点(不与C重合)的坐标 .

相关试题