【题目】如图所示,在△ABC中,∠BAC=106°,EF、MN分别是AB、AC的垂直平分线,点E、M在BC上,则∠EAN=_____.
![]()
参考答案:
【答案】32°.
【解析】
先由∠BAC=106°及三角形内角和定理求出∠B+∠C的度数,再根据线段垂直平分线的性质求出∠B=∠BAE,∠C=∠CAN,即∠B+∠C=∠BAE+∠CAN,由∠EAN=∠BAC(∠BAE+∠CAN)解答即可.
∵△ABC中,∠BAC=106°,
∴∠B+∠C=180°∠BAC=180°106°=74°,
∵EF、MN分别是AB、AC的中垂线,
∴∠B=∠BAE,∠C=∠CAN,
即∠B+∠C=∠BAE+∠CAN=74°,
∴∠EAN=∠BAC(∠BAE+∠CAN)=106°74°=32°.
故答案为32°.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图:在△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB于E,F在AC上,BD=DF;
证明:(1)CF=EB.
(2)AB=AF+2EB.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC中,CD是∠ACB的角平分线,CE是AB边上的高,
(1)若∠A=40°,∠B=60°,求∠DCE的度数.
(2)若∠A=m,∠B=n,求∠DCE.(用m、n表示)

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,点0是等边△ABC内一点,∠AOB=110°,∠BOC=α,OC=CD,
且∠DOC=60°连接OD.
(1)求证:△COD是等边三角形
(2)当α=150°时,试判断△AOD的形状,并说明理由
(3)探究:当α为多少度时,△AOD是等腰三角形

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在Rt△ABC中,∠C=90°,AC=BC=4,点P从点C出发沿CA以每秒1个单位长度的速度向终点A运动:同时,点Q从点C出发沿CB﹣BA运动,点Q在CB上的速度为每秒2个单位长度,在BA上的速度为每秒
个单位长度,当点P到达终点A时,点Q随之停止运动.以CP、CQ为邻边作CPMQ,设CPMQ与△ABC重叠部分图形的面积为y(平方单位),点P的运动时间为x(秒).
(1)当点M落在AB上时,求x的值.
(2)当点Q在边CB上运动时,求y与x的函数关系式.
(3)在P、Q两点整个运动过程中,当CPMQ与△ABC重叠部分图形不是四边形时,求x的取值范围.
(4)以B、C、M为顶点的三角形是等腰三角形时,直接写出CP的长. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,AB=AC,∠BAC=50°,∠BAC的平分线与AB的中垂线交于点O,点C沿EF折叠后与点O重合,则∠CEO的度数是_____.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,一块等腰直角的三角板ABC,在水平桌面上绕点C按顺时针方向旋转到A′B′C的位置,使A、C、B′三点共线,那么旋转角度的大小为( )

A.45°
B.90°
C.120°
D.135°
相关试题