【题目】如图,点D是⊙O的直径CA延长线上一点,点B在⊙O上,且∠DBA=∠BCD.
(1)证明:BD是⊙O的切线.
(2)若点E是劣弧BC上一点,AE与BC相交于点F,且△BEF的面积为16,cos∠BFA=
,那么,你能求出△ACF的面积吗?若能,请你求出其面积;若不能,请说明理由.
![]()
参考答案:
【答案】(1)证明见解析;(2)36.
【解析】(1)BD是⊙O的切线.先连接OB,由于AC是直径,那么∠ABC=90°,于是∠1+∠C=90°,而OA=OB,可得∠1=∠2,结合∠3=∠C,易得∠2+∠3=90°,从而可证DB是⊙O的切线;
(2)由于cos∠BFA=
,那么
,利用圆周角定理可知∠E=∠C,∠4=∠5,易证△EBF∽△CAF,于是
,从而易求△ACF的面积.
(1)BD是⊙O的切线.理由如下:
如图所示,连接OB.
∵AC是⊙O的直径,∴∠ABC=90°,∴∠1+∠C=90°.
∵OA=OB,∴∠1=∠2,∴∠2+∠C=90°.
∵∠3=∠C,∴∠2+∠3=90°,∴DB是⊙O的切线;
(2)在Rt△ABF中.
∵cos∠BFA=
.
∵∠E=∠C,∠4=∠5,∴△EBF∽△CAF,
∴
,即
,解得:S△ACF=22.5.
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】初二年级教师对试卷讲评课中学生参与的深度与广度进行评价调查,其评价项目为主动质疑、独立思考、专注听讲、讲解题目四项.评价组随机抽取了若干名初二学生的参与情况,绘制成如图所示的频数分布直方图和扇形统计图(均不完整),请根据图中所给信息解答下列问题:

(1)在这次评价中,一共抽查了 名学生;
(2)在扇形统计图中,项目“主动质疑”所在的扇形的圆心角的度数为 度;
(3)请将频数分布直方图补充完整;
(4)如果全市有6000名初二学生,那么在试卷评讲课中,“独立思考”的初二学生约有多少人?
-
科目: 来源: 题型:
查看答案和解析>>【题目】弹簧挂上物体后会伸长,测得一弹簧的长度y(cm)与所挂重物的质量x(kg)有下面的关系,那么弹簧总长y(cm)与所挂重物x(kg)之间的关系式为( )

A. y=x+12 B. y=0.5x+12
C. y=0.5x+10 D. y=x+10.5
-
科目: 来源: 题型:
查看答案和解析>>【题目】先化简再求值:
(1)[(xy+2)(xy﹣2)﹣2x2y2+4]÷(xy),其中x=10,y=

(2)(x+2y)2﹣(x+y)(3x﹣y)﹣5y2,其中x=﹣2,y=

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知:一次函数y=﹣2x+10的图象与反比例函数y=
(k>0)的图象相交于A、B两点(A的B的右侧).(1)当A(4,2)时,求反比例函数的解析式:
(2)当A的横坐标是3,B的横坐标是2时,直线OA与此反比例函数图象的另一支交于另一点C,连接BC交y轴于点D.
①求C点的坐标;
②求D点的坐标;
③求△ABC的面积.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,在平面直角坐标系中,直线y=﹣
x+b与x轴、y轴相交于A、B两点,动点C(m,0)在线段OA上,将线段CB绕着点C顺时针旋转90°得到CD,此时点D恰好落在直线AB上,过点D作DE⊥x轴于点E.(1)求m和b的数量关系;
(2)当m=1时,如图2,将△BCD沿x轴正方向平移得△B′C′D′,当直线B′C′经过点D时,求点B′的坐标及△BCD平移的距离;
(3)在(2)的条件下,直线AB上是否存在一点P,以P、C、D为顶点的三角形是等腰直角三角形?若存在,写出满足条件的P点坐标;若不存在,请说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】在图1﹣﹣图4中,菱形ABCD的边长为3,∠A=60°,点M是AD边上一点,且DM=
AD,点N是折线AB﹣BC上的一个动点.
(1)如图1,当N在BC边上,且MN过对角线AC与BD的交点时,则线段AN的长度为 .
(2)当点N在AB边上时,将△AMN沿MN翻折得到△A′MN,如图2,
①若点A′落在AB边上,则线段AN的长度为 ;
②当点A′落在对角线AC上时,如图3,求证:四边形AM A′N是菱形;
③当点A′落在对角线BD上时,如图4,求
的值.
相关试题