【题目】如图,正方形网格中每个小方格的边长为1,且点A,B,C均为格点.
![]()
(1)画出△ABC关于直线l的对称图形△A1B1C1;
(2)求△ABC的面积;
(3)边AB=_____________(不用写过程);
(4)在直线l上找一点D,使AD+BD最小.
参考答案:
【答案】(1)见解析;(2)5;(3)5;(4)见解析.
【解析】
(1)直接利用关于直线对称点的性质得出对应点位置进而得出答案;
(2)利用△ABC所在矩形面积减去周围多余三角形的面积进而得出答案;
(3)利用勾股定理列式计算即可得解;
(4)利用轴对称求最短路线的方法得出答案.
![]()
解:(1)如图所示:△A1B1C1即为所求;
(2)△ABC的面积为:4×4-
×2×4-
×2×1-
×3×4=5;
(3)由勾股定理得:AB=
;
(4)如图所示:点D即为所求的点.
故答案为:(1)见解析;(2)5;(3)5;(4)见解析.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知:如图,四边形ABCD中,AD∥BC,AD=CD,E是对角线BD上一点,且EA=EC,BE=BC.当∠CBE:∠BCE=_________,求证:四边形ABCD是正方形.

-
科目: 来源: 题型:
查看答案和解析>>【题目】(1)如图1,在一块宽为12m,长为20m的矩形地面上修筑同样宽的道路,余下的部分种上草坪.要使草坪的面积为180m2,求道路的宽;
(2)现在对该矩形区域进行改造,如图2,在正中央建一个与矩形的边互相平行的正方形观赏亭,观赏亭的四边连接四条与矩形的边互相平行的且宽度相等的道路,已知道路的宽为正方形边长的
.若道路与观赏亭的面积之和是矩形面积的
,求道路的宽.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知Rt△ABC中,∠ABC=90°,先把△ABC绕点B顺时针旋转90°至△DBE后,再把△ABC沿射线平移至△FEG,DE、FG相交于点H.

(1)判断线段DE、FG的位置关系,并说明理由;
(2)连结CG,求证:四边形CBEG是正方形.
-
科目: 来源: 题型:
查看答案和解析>>【题目】从三角形(不是等腰三角形)一个顶点引出一条射线于对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原三角形相似,我们把这条线段叫做这个三角形的完美分割线.
(1)如图1,在△ABC中,CD为角平分线,∠A=40°,∠B=60°,求证:CD为△ABC的完美分割线.
(2)在△ABC中,∠A=48°,CD是△ABC的完美分割线,且△ACD为等腰三角形,求∠ACB的度数.
(3)如图2,△ABC中,AC=2,BC=
,CD是△ABC的完美分割线,且△ACD是以CD为底边的等腰三角形,求完美分割线CD的长.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图是小李骑自行车离家的距离s(km)与时间t(h)之间的关系:

(1)在这个变化过程中自变量是_________,因变量是___________;
(2)小李_________时到达离家最远的地方,此时离家_________km;
(3)分别求出在1≤t≤2时和2≤t≤4时小李骑自行车的速度;
(4)请直接写出小李何时与家相距20km?
-
科目: 来源: 题型:
查看答案和解析>>【题目】探索题:(x-1)((x+1)=x2-1,
(x-1)(x2+x+1)=x3-1,
(x-1)(x3+x2+x+1)=x4-1,
(x-1)(x4+x3+x2+x+1)=x5-1.
(1)观察以上各式并猜想:
①(x-1)(x6+x5+x4+x3+x2+x+1)=________________________;
②(x-1)(xn+xn-1+xn-2+…+x3+x2+x+1)= ________________________;
(2)请利用上面的结论计算:
①(-2)50+(-2)49+(-2)48+…+(-2)+1
②若x1007+x1006+…+x3+x2+x+1=0,求x2016的值.
相关试题