【题目】解答题
(1)问题发现
如图1,△ABC和△ADE均为等边三角形,点D在边BC上,连接CE.请填空:
①∠ACE的度数为;
②线段AC、CD、CE之间的数量关系为 . ![]()
(2)拓展探究
如图2,△ABC和△ADE均为等腰直角三角形,∠BAC=∠DAE=90°,点D在边BC上,连接CE.请判断∠ACE的度数及线段AC、CD、CE之间的数量关系,并说明理由.![]()
(3)解决问题
如图3,在四边形ABCD中,∠BAD=∠BCD=90°,AB=AD=2,CD=1,AC与BD交于点E,请直接写出线段AC的长度.![]()
参考答案:
【答案】
(1)60°;AC=CD+CE
(2)
解:∠ACE=45°,
AC=CD+CE,理由是:
如图2,∵△ABC和△ADE均为等腰直角三角形,且∠BAC=∠DAE=90°,
∴AB=AC,AD=AE,∠BAC﹣∠DAC=∠DAE﹣∠DAC,
即∠BAD=∠CAE,
∴△ABD≌△ACE,
∴BD=CE,∠ACE=∠B=45°,
∵BC=CD+BD,
∴BC=CD+CE,
∵在等腰直角三角形ABC中,BC=
AC,
∴
AC=CD+CE;
(3)
解:如图3,过A作AC的垂线,交CB的延长线于点F,
![]()
∵∠BAD=∠BCD=90°,AB=AD=2,CD=1,
∴BD=2
,BC=
,
∵∠BAD=∠BCD=90°,
∴∠BAD+∠BCD=180°,
∴A、B、C、D四点共圆,
∴∠ADB=∠ACB=45°,
∴△ACF是等腰直角三角形,
由(2)得:
AC=BC+CD,
∴AC=
=
=
.
【解析】解:(1)①∵△ABC和△ADE均为等边三角形,
∴AB=AC,AD=AE,∠BAC=∠DAE=∠B=60°,
∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,
即∠BAD=∠CAE,
∴△BAD≌△CAE(SAS),
∴∠ACE=∠B=60°,
所以答案是:60°;②线段AC、CD、CE之间的数量关系为:AC=CD+CE;
理由是:由①得:△BAD≌△CAE,
∴BD=CE,
∵AC=BC=BD+CD,
∴AC=CD+CE;
所以答案是:AC=CD+CE;
-
科目: 来源: 题型:
查看答案和解析>>【题目】我市规划中某地段地铁线路要穿越护城河PQ,站点A和站点B在河的两侧,要测算出A、B间的距离.工程人员在点P处测得A在正北方向,B位于南偏东24.5°方向,前行1200m,到达点Q出,测得A位于北偏东49°方向,B位于南偏西41°方向.根据以上数据,求A、B间的距离.(参考数据:cos41°≈0.75)

-
科目: 来源: 题型:
查看答案和解析>>【题目】解答题。
(1)计算:(﹣1)2015+(
)﹣3﹣(π﹣3.1)0(2)计算:(﹣2x2y)23xy÷(﹣6x2y)
(3)先化简,再求值:[(2x+y)2+(2x+y)(y﹣2x)﹣6y]÷2y,其中x=-
,y=3. (4)用整式乘法公式计算:
. -
科目: 来源: 题型:
查看答案和解析>>【题目】小东根据学习函数的经验,对函数y=
的图象与性质进行了探究.下面是小东的探究过程,请补充完整,并解决相关问题:
(1)函数y=
的自变量x的取值范围是;
(2)表格是y与x的几组对应值.x
…
﹣2
﹣1
﹣
0

1

2

3
4
…
y
…


2

4

2

m
…
表中m的值为;
(3)如图,在平面直角坐标系中,描出了以上表中各对对应值为坐标的点. 根据描出的点,画出函数y=
的大致图象;
(4)结合函数图象,请写出函数y=
的一条性质: .
(5)如果方程
=a有2个解,那么a的取值范围是 . -
科目: 来源: 题型:
查看答案和解析>>【题目】(10分)某体育用品专卖店销售7个篮球和9个排球的总利润为355元,销售10个篮球和20个排球的总利润为650元.
(1)求每个篮球和每个排球的销售利润;
(2)已知每个篮球的进价为200元,每个排球的进价为160元,若该专卖店计划用不超过17400元购进篮球和排球共100个,且要求篮球数量不少于排球数量的一半,请你为专卖店设计符合要求的进货方案.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在四边形ABCD中,连接BD,点E,F分别在AB和CD上,连接CE,AF,CE与AF分别交B于点N,M.已知∠AMD=∠BNC.

(1)若∠ECD=60°,求∠AFC的度数;
(2)若∠ECD=∠BAF,试判断∠ABD与∠BDC之间的数量关系,并说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】化简,求值
(1)5x2y+{xy﹣[5x2y﹣(7xy2+
xy)]﹣(4x2y+xy)}﹣7xy2,其中x=﹣
,y=﹣16.(2)A=4x2﹣2xy+4y2,B=3x2﹣6xy+3y2,且|x|=3,y2=16,|x+y|=1,求4A+[(2A﹣B)﹣3(A+B)]的值.
(3)如果m﹣3n+4=0,求:(m﹣3n)2+7m3﹣3(2m3n﹣m2n﹣1)+3(m3+2m3n﹣m2n+n)﹣m﹣10m3的值.
相关试题