【题目】如图,正方形ABCD的两边BC,AB分别在平面直角坐标系的x轴、y轴的正半轴上,正方形A′B′C′D′与正方形ABCD是以AC的中点O′为中心的位似图形,已知AC=3
,若点A′的坐标为(1,2),则正方形A′B′C′D′与正方形ABCD的相似比是( ) ![]()
A.![]()
B.![]()
C.![]()
D.![]()
参考答案:
【答案】B
【解析】解:∵在正方形ABCD中,AC=3
∴BC=AB=3,
延长A′B′交BC于点E,
∵点A′的坐标为(1,2),
∴OE=1,EC=A′E=3﹣1=2,
∴OE:BC=1:3,
∴AA′:AC=1:3,
∵AA′=CC′,
∴AA′=CC′=A′C′,
∴A′C′:AC=1:3,
∴正方形A′B′C′D′与正方形ABCD的相似比是
.
故选B.![]()
【考点精析】掌握位似变换是解答本题的根本,需要知道它们具有相似图形的性质外还有图形的位置关系(每组对应点所在的直线都经过同一个点—位似中心).
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在长方形ABCD中,AB:BC=3:4,AC=5,点P从点A出发,以每秒1个单位的速度,沿△ABC边A→B→C→A的方向运动,运动时间为t秒.
(1)求AB与BC的长;
(2)在点P的运动过程中,是否存在这样的点P,使△CDP为等腰三角形?若存在,求出t值;若不存在,说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,直线AB与CD相交于点O,OP是∠BOC的平分线,EO⊥AB于点O,FO⊥CD于点O.
(1)图中除直角外,还有其他相等的角,请写出两对:①______________;②______________.
(2)如果∠AOD=40°,那么:
①根据__________,可得∠BOC=________;
②求∠POF的度数.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,∠1=∠2,DE⊥BC,AB⊥BC,试说明:∠A=∠3.

解:因为DE⊥BC,AB⊥BC(已知),
所以∠DEC=∠ABC=90°(____________),
所以DE∥AB(____________________),
所以∠2=________(____________________),
∠1=________(____________________).
因为∠1=∠2(已知),
所以∠A=∠3(等量代换).
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知∠1,∠2互为补角,且∠3=∠B,
(1)求证:∠AFE=∠ACB
(2)若CE平分∠ACB,且∠1=80°,∠3=45°,求∠AFE的度数.

-
科目: 来源: 题型:
查看答案和解析>>【题目】二次函数y=ax2+bx+c(a≠0)的图象如图所示,其对称轴为直线x=1,有如下结论:
①c<1;
②2a+b=0;
③b2<4ac;
④若方程ax2+bx+c=0的两根为x1 , x2 , 则x1+x2=2.
则正确的结论是( )
A.①②
B.①③
C.②④
D.③④ -
科目: 来源: 题型:
查看答案和解析>>【题目】已知:如图,在△ABC中,D是BA延长线上一点,AE是∠DAC的平分线,P是AE上的一点(点P不与点A重合),连接PB,PC.通过观察,测量,猜想PB+PC与AB+AC之间的大小关系,并加以证明.

相关试题