【题目】如图,D是△ABC外接圆上的动点,且B,D位于AC的两侧,DE⊥AB,垂足为E,DE的延长线交此圆于点F.BG⊥AD,垂足为G,BG交DE于点H,DC,FB的延长线交于点P,且PC=PB.
(1)求证:BG∥CD;
(2)设△ABC外接圆的圆心为O,若AB=
DH,∠OHD=80°,求∠BDE的大小.
![]()
参考答案:
【答案】(1)证明见解析;(2)20°或40°.
【解析】
(1)根据等边对等角得:∠PCB=∠PBC,由四点共圆的性质得:∠BAD+∠BCD=180°,从而得:∠BFD=∠PCB=∠PBC,根据平行线的判定得:BC∥DF,可得∠ABC=90°,AC是⊙O的直径,从而得:∠ADC=∠AGB=90°,根据同位角相等可得结论;
(2)先证明四边形BCDH是平行四边形,得BC=DH,根据特殊的三角函数值得:∠ACB=60°,∠BAC=30°,所以DH=
AC,分两种情况:
①当点O在DE的左侧时,如图2,作辅助线,构建直角三角形,由同弧所对的圆周角相等和互余的性质得:∠AMD=∠ABD,则∠ADM=∠BDE,并由DH=OD,可得结论;
②当点O在DE的右侧时,如图3,同理作辅助线,同理有∠ADE=∠BDN=20°,∠ODH=20°,得结论.
(1)证明:如图1,
![]()
∵PC=PB,
∴∠PCB=∠PBC,
∵四边形ABCD内接于圆,
∴∠BAD+∠BCD=180°,
∵∠BCD+∠PCB=180°,
∴∠BAD=∠PCB,
∵∠BAD=∠BFD,
∴∠BFD=∠PCB=∠PBC,
∴BC∥DF,
∵DE⊥AB,
∴∠DEB=90°,
∴∠ABC=90°,
∴AC是⊙O的直径,
∴∠ADC=90°,
∵BG⊥AD,
∴∠AGB=90°,
∴∠ADC=∠AGB,
∴BG∥CD;
(2)由(1)得:BC∥DF,BG∥CD,
∴四边形BCDH是平行四边形,
∴BC=DH,
在Rt△ABC中,∵AB=
DH,
∴tan∠ACB=
,
∴∠ACB=60°,∠BAC=30°,
∴∠ADB=60°,BC=
AC,
∴DH=
AC,
①当点O在DE的左侧时,如图2,作直径DM,连接AM、OH,则∠DAM=90°,
![]()
∴∠AMD+∠ADM=90°
∵DE⊥AB,
∴∠BED=90°,
∴∠BDE+∠ABD=90°,
∵∠AMD=∠ABD,
∴∠ADM=∠BDE,
∵DH=
AC,
∴DH=OD,
∴∠DOH=∠OHD=80°,
∴∠ODH=20°
∵∠AOB=60°,
∴∠ADM+∠BDE=40°,
∴∠BDE=∠ADM=20°,
②当点O在DE的右侧时,如图3,作直径DN,连接BN,
![]()
由①得:∠ADE=∠BDN=20°,∠ODH=20°,
∴∠BDE=∠BDN+∠ODH=40°,
综上所述,∠BDE的度数为20°或40°.
-
科目: 来源: 题型:
查看答案和解析>>【题目】甲、乙两家快递公司揽件员(揽收快件的员工)的日工资方案如下:
甲公司为“基本工资+揽件提成”,其中基本工资为70元/日,每揽收一件提成2元;
乙公司无基本工资,仅以揽件提成计算工资.若当日揽件数不超过40,每件提成4元;若当日搅件数超过40,超过部分每件多提成2元.
如图是今年四月份甲公司揽件员人均揽件数和乙公司搅件员人均揽件数的条形统计图:

(1)现从今年四月份的30天中随机抽取1天,求这一天甲公司揽件员人均揽件数超过40(不含40)的概率;
(2)根据以上信息,以今年四月份的数据为依据,并将各公司揽件员的人均揽件数视为该公司各揽件员的
揽件数,解决以下问题:
①估计甲公司各揽件员的日平均件数;
②小明拟到甲、乙两家公司中的一家应聘揽件员,如果仅从工资收入的角度考虑,请利用所学的统计知识帮他选择,井说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】空地上有一段长为a米的旧墙MN,某人利用旧墙和木栏围成一个矩形菜园ABCD,已知木栏总长为100米.
(1)已知a=20,矩形菜园的一边靠墙,另三边一共用了100米木栏,且围成的矩形菜园面积为450平方米.如图1,求所利用旧墙AD的长;
(2)已知0<α<50,且空地足够大,如图2.请你合理利用旧墙及所给木栏设计一个方案,使得所围成的矩形菜园ABCD的面积最大,并求面积的最大值.

-
科目: 来源: 题型:
查看答案和解析>>【题目】以边长为2的正方形的中心O为端点,引两条相互垂直的射线,分别与正方形的边交于A、B两点,则线段AB的最小值是 .
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,点P为定角∠AOB的平分线上的一个定点,且∠MPN与∠AOB互补,若∠MPN在绕点P旋转的过程中,其两边分别与OA、OB相交于M、N两点,则以下结论:(1)PM=PN恒成立;(2)OM+ON的值不变;(3)四边形PMON的面积不变;(4)MN的长不变,其中正确的个数为( )

A. 4B. 3C. 2D. 1
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,点P、Q分别是边长为4cm的等边△ABC边AB、BC上的动点,点P从顶点A,点Q从顶点B同时出发,且它们的速度都为1cm/s。
⑴连接AQ、CP交于点M,在点P、Q运动的过程中,∠CMQ的大小变化吗?若变化,则说明理由,若不变,请直接写出它的度数;
⑵点P、Q在运动过程中,设运动时间为t,当t为何值时,△PBQ为直角三角形?
⑶如图2,若点P、Q在运动到终点后继续在射线AB、BC上运动,直线AQ、CP交点为M,则∠CMQ的大小变化吗?则说明理由;若不变,请求出它的度数。

-
科目: 来源: 题型:
查看答案和解析>>【题目】探究:如图,分别以△ABC的两边AB和AC为边向外作正方形ABMN和正方形ACDE,CN、BE交于点P. 求证:∠ANC = ∠ABE.
应用:Q是线段BC的中点,连结PQ. 若BC = 6,则PQ = ___________.

相关试题