【题目】为了加强公民的节水意识,合理利用水资源,某区采用价格调控手段达到节水的目的,右下表是调控后的价目表.
(1)若该户居民8月份用水8吨,则该用户8月应交水费 元;若该户居民9月份应交水费26元,则该用户9月份用水量 吨;
(2)若该户居民10月份应交水费30元,求该用户10月份用水量;
(3)若该户居民11月、12月共用水18吨,共交水费52元,求11月、12月各应交水费多少元?
![]()
参考答案:
【答案】⑴ 20元;9.5吨;⑵10.25吨;⑶ 11月交16元、12月交36元或11月交36元、12月交16元.
【解析】
试题(1)因为用水量为8 吨,所以计算单价分为两段,列式计算即可;先计算用水量为6吨和10吨的总价,与26对比,发现9月份用水量x的取值范围,从而列出方程求解;
(2)由题意得出水费30元,用水量超过了10吨,列方程求未知数即可;
(3)设该户居民11月用水量为x吨,12月用水量为(18-x)吨;共交水费52元.列方程求解即可.
试题解析:(1)6×2+(8-6)×4=20,
答:该用户8月应交水费20元;
设该用户9月份用水量为x吨,
2×6=12,2×6+(10-6)×4=28,
∵12<26<28,
∴6<x<10,
则6×2+4(x-6)=26,
x=9.5,
答:该用户9月份用水量为9.5吨;
(2)该用户10月份用水量为y吨,则y>10,
根据题意得:6×2+(10-6)×4+8(y-10)=30,
y=10.25;
(3)设11月份用水x吨,12月份用水y吨,
①当11月份用水不超过6吨时,12月份用水超过10吨时,由题意得:
解得:
(舍去)
②当11月份用水超过6吨不超过10时,12月份用水超过10吨时,由题意得:
![]()
解得:![]()
故11月份的水费为:6×2+1×4=16(元);
12月份的水费为:6×2+4×4+1×8=36(元);
同理可得:11月交36元、12月交16元.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,已知点A(0,1),直线l:y=﹣1.动点P满足条件:

①P在这个平面直角坐标系中;
②P到A的距离和P到l的距离相等;
(1)求点P所经过的轨迹方程,并在网格中绘制这个图象.(提示:平面直角坐标系中两点之间的距离可以通过勾股定理来求得)
(2)已知直线y=kx+1,小明同学说,这条直线与(1)中所绘的图象有两个交点?你能说明小明为什么这么说吗?
(3)经过了上述的计算、绘图,小明发现,如果第(2)问的两个交点分别为B、C,那么,过BC的中点M作直线l的垂线,垂足为H,连接BH、CH,所得到的三角形BCH是个特殊的三角形,你能说明它是什么三角形吗?为什么? -
科目: 来源: 题型:
查看答案和解析>>【题目】如图①,正方形ABCD中,点A,B的坐标分别为(0,10),(8,4),点C在第一象限.动点P在正方形ABCD的边上,从点A出发沿A→B→C→D→A匀速运动,同时动点Q以相同的速度在x轴正半轴上运动,当点P到达A点时,两点同时停止运动,设运动的时间为t秒.

(1)当P点在边AB上运动时点Q的横坐标x(长度单位)关于运动时间t(秒)的函数图象如图②所示,请写出点Q开始运动时的坐标及点P运动速度;
(2)求正方形边长及顶点C的坐标;
(3)在(1)中,设△OPQ的面积为S,求S与t的函数关系式并写出自变量的取值范围.
(4)如果点P、Q保持原速度不变,当点P沿A→B→C→D匀速运动时,OP与PQ能否相等?若能,写出所有符合条件的t的值;若不能,请说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,将形状、大小完全相同的“
”和线段按照一定规律摆成下列图形.第1幅图形中“
”的个数为
,第2幅图形中“
”的个数为
,第3幅图形中“
”的个数为
,……,以此类推,解决以下问题:(1)直接写出
,
(用含n的代数式表示);(2)猜想是否存在某幅图中“
”的个数为2018,若存在,直接写出n的值;若不存在,则直接写出2018至少再加上多少后所得的数正好是某幅图中黑点的个数,并直接写出此时n的值;(3)求出
的值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,点A从原点出发沿数轴向左运动,同时,点B也从原点出发沿数轴向右运动,3秒后,两点相距15个单位长度.已知点B的速度是点A的速度的4倍(速度单位:单位长度/秒).

(1)求出点A、点B运动的速度,并在数轴上标出A、B两点从原点出发运动3秒时的位置;
(2)若A、B两点从(1)中的位置开始,仍以原来的速度同时沿数轴向左运动,几秒时,原点恰好处在点A、点B的正中间?
(3)若A、B两点从(1)中的位置开始,仍以原来的速度同时沿数轴向左运动时,另一点C同时从B点位置出发向A点运动,当遇到A点后,立即返回向B点运动,遇到B点后又立即返回向A点运动,如此往返,直到B点追上A点时,C点立即停止运动.若点C一直以20单位长度/秒的速度匀速运动,那么点C从开始运动到停止运动,行驶的路程是多少个单位长度?
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知A=2x2+3xy﹣2x﹣1,B=﹣x2+xy﹣1:
(1)求3A+6B;
(2)若3A+6B的值与x无关,求y的值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知线段AB上有两点C、D,且AC=BD,M、N分别是线段AC 、AD的中点,若AB=a cm ,AC=BD=b cm,且a,b满足(a-9)2+|b-7 |=0.

(1)求AB ,AC的长度;
(2)求线段MN的长度.
相关试题