【题目】如图,在平面直角坐标系中,已知点A(0,1),直线l:y=﹣1.动点P满足条件:![]()
①P在这个平面直角坐标系中;
②P到A的距离和P到l的距离相等;
(1)求点P所经过的轨迹方程,并在网格中绘制这个图象.(提示:平面直角坐标系中两点之间的距离可以通过勾股定理来求得)
(2)已知直线y=kx+1,小明同学说,这条直线与(1)中所绘的图象有两个交点?你能说明小明为什么这么说吗?
(3)经过了上述的计算、绘图,小明发现,如果第(2)问的两个交点分别为B、C,那么,过BC的中点M作直线l的垂线,垂足为H,连接BH、CH,所得到的三角形BCH是个特殊的三角形,你能说明它是什么三角形吗?为什么?
参考答案:
【答案】
(1)
解:设P的坐标为P(x,y),由题意得:
=|y+1|,
两边平方得:x2+(y﹣1)2=(y+1)2,
∴y=
x2,即P的轨迹为一抛物线,其图象如图1所示;
![]()
(2)
解:抛物线直线方程联立得
,消去y可得x2﹣4kx﹣4=0,
∴△=16k2+16>0,
∴直线y=kx+1与抛物线有两个交点;
(3)
解:如图2,过B作BB′⊥l于B′,过C作CC′⊥l于C′,
![]()
由(1)中的条件可得BB′=BA,CC′=CA,
∴BC=BA+AC=BB′+CC′,
又由题意可得MH是梯形BB′C′C的中位线,
∴MH=
(BB′+CC′)=
BC,
∴MB=MC=MH,
∴△BHC是以∠BHC为直角的直角三角形.
【解析】(1)设出P点坐标,表示出P到A的距离和P到l的距离相等,可求得其轨迹方程,可画出图象;(2)联立直线与抛物线解析式利用一元二次方程的判别式可判断得出;(3)过B作BB′⊥l于B′,过C作CC′⊥l于C′,由条件可证明MH为梯形BB′C′C的中位线,可证得△BCH为直角三角形.
【考点精析】解答此题的关键在于理解二次函数的图象的相关知识,掌握二次函数图像关键点:1、开口方向2、对称轴 3、顶点 4、与x轴交点 5、与y轴交点,以及对二次函数的性质的理解,了解增减性:当a>0时,对称轴左边,y随x增大而减小;对称轴右边,y随x增大而增大;当a<0时,对称轴左边,y随x增大而增大;对称轴右边,y随x增大而减小.
-
科目: 来源: 题型:
查看答案和解析>>【题目】定义一种新运算⊙:1⊙3=1×4+3=7; 3⊙(-1)=3×4-1=11;(-5)⊙4=(-5)×4+4=-16; (-4)⊙(-3)=(-4)×4-3=-19.
(1)由以上式子可知:a⊙b= ;
(2)若a⊙(-2b)=4,请计算(a-b)⊙(2a+b)的值;
(3)若[x⊙(-2)] ⊙ [(-x)⊙2]=6,求x的值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知∠AOB=120°,OC⊥OB,按下列要求利用量角器过点O作出射线OD、OE;
(1)在图①中作出射线OD满足∠COD=50°,并直接写出∠AOD的度数是 ;
(2)在图②中作出射线OD、OE,使得OD平分∠AOC,OE平分∠BOD,并求∠COE的度数;
(3)如图③,若射线OD从OA出发以每秒10°的速度绕点O顺时针方向旋转,同时射线OE从OC出发以每秒5°的速度绕点O顺时针方向旋转,设旋转的时间为t秒,在旋转过程中,当OB第一次恰好平分∠DOE时,求出t的值,并作出此时OD、OE的大概位置.

-
科目: 来源: 题型:
查看答案和解析>>【题目】水果店王阿姨到水果批发市场打算购进一种水果销售,经过还价,实际价格每千克比原来少2元,发现原来买这种水果80千克的钱,现在可买88千克.
(1)现在实际购进这种水果每千克多少元?
(2)王阿姨准备购进这种水果销售,若这种水果的销售量y(千克)与销售单价x(元/千克)满足如图所示的一次函数关系. ①求y与x之间的函数关系式;
②请你帮王阿姨拿个主意,将这种水果的销售单价定为多少时,能获得最大利润?最大利润是多少?(利润=销售收入﹣进货金额)
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图①,正方形ABCD中,点A,B的坐标分别为(0,10),(8,4),点C在第一象限.动点P在正方形ABCD的边上,从点A出发沿A→B→C→D→A匀速运动,同时动点Q以相同的速度在x轴正半轴上运动,当点P到达A点时,两点同时停止运动,设运动的时间为t秒.

(1)当P点在边AB上运动时点Q的横坐标x(长度单位)关于运动时间t(秒)的函数图象如图②所示,请写出点Q开始运动时的坐标及点P运动速度;
(2)求正方形边长及顶点C的坐标;
(3)在(1)中,设△OPQ的面积为S,求S与t的函数关系式并写出自变量的取值范围.
(4)如果点P、Q保持原速度不变,当点P沿A→B→C→D匀速运动时,OP与PQ能否相等?若能,写出所有符合条件的t的值;若不能,请说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,将形状、大小完全相同的“
”和线段按照一定规律摆成下列图形.第1幅图形中“
”的个数为
,第2幅图形中“
”的个数为
,第3幅图形中“
”的个数为
,……,以此类推,解决以下问题:(1)直接写出
,
(用含n的代数式表示);(2)猜想是否存在某幅图中“
”的个数为2018,若存在,直接写出n的值;若不存在,则直接写出2018至少再加上多少后所得的数正好是某幅图中黑点的个数,并直接写出此时n的值;(3)求出
的值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】为了加强公民的节水意识,合理利用水资源,某区采用价格调控手段达到节水的目的,右下表是调控后的价目表.
(1)若该户居民8月份用水8吨,则该用户8月应交水费 元;若该户居民9月份应交水费26元,则该用户9月份用水量 吨;
(2)若该户居民10月份应交水费30元,求该用户10月份用水量;
(3)若该户居民11月、12月共用水18吨,共交水费52元,求11月、12月各应交水费多少元?

相关试题