【题目】如图,C为线段AE上一动点(不与点A、E重合),在AE同侧分别作正△ABC和正△CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ.以下五个结论:①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP;⑤∠AOB=60°.
恒成立的结论有 .(把你认为正确的序号都填上)
![]()
参考答案:
【答案】①②③⑤
【解析】
试题分析:由已知条件运用等边三角形的性质得到三角形全等,进而得到更多结论,然后运用排除法,对各个结论进行验证从而确定最后的答案.
解:①∵正△ABC和正△CDE,
∴AC=BC,CD=CE,∠ACB=∠DCE=60°,
∵∠ACD=∠ACB+∠BCD,∠BCE=∠DCE+∠BCD,
∴∠ACD=∠BCE,
∴△ADC≌△BEC(SAS),
∴AD=BE,∠ADC=∠BEC,(故①正确);
②又∵CD=CE,∠DCP=∠ECQ=60°,∠ADC=∠BEC,
∴△CDP≌△CEQ(ASA).
∴CP=CQ,
∴∠CPQ=∠CQP=60°,
∴∠QPC=∠BCA,
∴PQ∥AE,(故②正确);
③∵△CDP≌△CEQ,
∴DP=QE,
∵△ADC≌△BEC
∴AD=BE,
∴AD﹣DP=BE﹣QE,
∴AP=BQ,(故③正确);
④∵DE>QE,且DP=QE,
∴DE>DP,(故④错误);
⑤∠AOB=∠DAE+∠AEO=∠DAE+∠ADC=∠DCE=60°,(故⑤正确).
∴正确的有:①②③⑤.
故答案为:①②③⑤.
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,一个点从数轴上的原点开始,先向右移动3个单位长度,再向左移动5个单位长度,可以看到终点表示的数是﹣2.
已知点A是数轴上的点,完成下列各题:
(1)如果点A表示的数是3,将点A先向左移动7个单位长度,再向右移动5个单位长度,那么终点B表示的数是 , A、B两点间的距离为;
(2)如果点A表示的数是﹣4,将点A先向右移动168个单位长度,再向左移动256个单位长度,那么终点B表示的数是 , A、B两点间的距离为;
一般地,如果点A表示的数是m,将点A先向右移动n个单位长度,再向左移动t个单位长度,那么终点B表示的数是 , A、B两点间的距离为 . -
科目: 来源: 题型:
查看答案和解析>>【题目】已知直线y=
x+3与两坐标轴分别相交于A、B两点,若点P、Q分别是线段AB、OB上的动点,且点P不与A、B重合,点Q不与O、B重合.(1)若OP⊥AB于点P,△OPQ为等腰三角形,这时满足条件的点Q有几个?请直接写出相应的OQ的长;
(2)当点P是AB的中点时,若△OPQ与△ABO相似,这时满足条件的点Q有几个?请分别求出相应的OQ的长;
(3)试探究是否存在以点P为直角顶点的Rt△OPQ?若存在,求出相应的OQ的范围,并求出OQ取最小值时点P的坐标;若不存在,请说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】希望工程义演出售两种票,成人票每张10元,儿童票每张6元,共卖出1000张票,如果成人票卖了x张,出售儿童票共收入钱数为( )
A.(1000﹣x)元
B.6(1000﹣x)元
C.6x元
D.10(1000﹣x)元 -
科目: 来源: 题型:
查看答案和解析>>【题目】一个三角形的三边之比为5∶12∶13,它的周长为60,则它的面积是________.
-
科目: 来源: 题型:
查看答案和解析>>【题目】阅读下列材料并解决有关问题:我们知道|x|=
,
所以当x>0时,
=
=1; 当x<0时,
=
=﹣1.现在我们可以用这个结论来解决下面问题:
(1)已知a,b是有理数,当ab≠0时,
+
=;
(2)已知a,b是有理数,当abc≠0时,
+
+
=;
(3)已知a,b,c是有理数,a+b+c=0,abc<0,则
+
+
= . -
科目: 来源: 题型:
查看答案和解析>>【题目】已知二次函数y=
(k是常数).(1)若该函数的图象与x轴有两个不同的交点,试求k的取值范围;
(2)若点(1,k)在某反比例函数图象上,要使该反比例函数和二次函数y=
都是y随x的增大而增大,求k应满足的条件及x的取值范围;(3)若抛物线y=
与x轴交于A(
,0)、B(
,0)两点,且
<
,
=34,若与y轴不平行的直线y=ax+b经过点P(1,3),且与抛物线交于
(
,
)、
(
,
)两点,试探究
是否为定值,并写出探究过程.
相关试题