【题目】如图,抛物线y=ax2+bx+c(a≠0)经过点 经过点A(﹣1,0),B(5,﹣6),C(6,0)
(1)求抛物线的解析式;
(2)如图,在直线AB下方的抛物线上是否存在点P使四边形PACB的面积最大?若存在,请求出点P的坐标;若不存在,请说明理由;
(3)若点Q为抛物线的对称轴上的一个动点,试指出△QAB为等腰三角形的点Q一共有几个?并请求出其中某一个点Q的坐标.
![]()
参考答案:
【答案】(1)y=x2﹣5x﹣6;(2)存在,P(2,﹣12);(3)Q点一共有5个,(
,﹣
).
【解析】试题分析:(1)抛物线经过点A(﹣1,0),B(5,﹣6),C(6,0),可利用两点式法设抛物线的解析式为y=a(x+1)(x﹣6),代入B(5,﹣6)即可求得函数的解析式;(2)作辅助线,将四边形PACB分成三个图形,两个三角形和一个梯形,设P(m,m2﹣5m﹣6),四边形PACB的面积为S,用字母m表示出四边形PACB的面积S,发现是一个二次函数,利用顶点坐标求极值,从而求出点P的坐标.(3)分三种情况画图:①以A为圆心,AB为半径画弧,交对称轴于Q1和Q4,有两个符合条件的Q1和Q4;②以B为圆心,以BA为半径画弧,也有两个符合条件的Q2和Q5;③作AB的垂直平分线交对称轴于一点Q3,有一个符合条件的Q3;最后利用等腰三角形的腰相等,利用勾股定理列方程求出Q3坐标.
试题解析:(1)设y=a(x+1)(x﹣6)(a≠0),
把B(5,﹣6)代入:a(5+1)(5﹣6)=﹣6,
a=1,
∴y=(x+1)(x﹣6)=x2﹣5x﹣6;
(2)存在,
如图1,分别过P、B向x轴作垂线PM和BN,垂足分别为M、N,
设P(m,m2﹣5m﹣6),四边形PACB的面积为S,
则PM=﹣m2+5m+6,AM=m+1,MN=5﹣m,CN=6﹣5=1,BN=5,
∴S=S△AMP+S梯形PMNB+S△BNC
=
(﹣m2+5m+6)(m+1)+
(6﹣m2+5m+6)(5﹣m)+
×1×6
=﹣3m2+12m+36
=﹣3(m﹣2)2+48,
当m=2时,S有最大值为48,这时m2﹣5m﹣6=22﹣5×2﹣6=﹣12,
∴P(2,﹣12),
(3)这样的Q点一共有5个,连接Q3A、Q3B,
y=x2﹣5x﹣6=(x﹣
)2﹣
;
因为Q3在对称轴上,所以设Q3(
,y),
∵△Q3AB是等腰三角形,且Q3A=Q3B,
由勾股定理得:(
+1)2+y2=(
﹣5)2+(y+6)2,
y=﹣
,
∴Q3(
,﹣
).
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A(﹣1,0),与y轴的交点B在(0,﹣2)和(0,﹣1)之间(不包括这两点),对称轴为直线x=1.下列结论:①abc>0 ;②4a+2b+c>0 ;③4ac﹣b2<8a ;④
<a<
;⑤b>c.其中正确结论的是:____________.(填序号)
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知x+y=3,xy=2.求:(1)x3+y3;(2)x4+y4 .
-
科目: 来源: 题型:
查看答案和解析>>【题目】图1是一个长为2m、宽为2n的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图2的形状拼成一个正方形.

(1)请用两种不同的方法求图2中阴影部分的面积(直接用含m,n的代数式表示) 方法1:
方法2:
(2)根据(1)中结论,请你写出下列三个代数式之间的等量关系;代数式:(m+n)2 , (m﹣n)2 , mn
(3)根据(2)题中的等量关系,解决如下问题:已知a+b=8,ab=7,求a﹣b和a2﹣b2的值. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知七名选手参加演讲比赛,所得分数各不同.其中一名选手想知道自己能否进入前四名,他除了知道他本人的分数外,还要知道七名选手分数的( )
A. 中位数B. 众数C. 平均数D. 方差
-
科目: 来源: 题型:
查看答案和解析>>【题目】一辆慢车与一辆快车分别从甲、乙两地同时出发,匀速相向而行,两车在途中相遇后都停留一段时间,然后分别按原速一同驶往甲地后停车.设慢车行驶的时间为x小时,两车之间的距离为y千米,图中折线表示y与x之间的函数图象,请根据图象解决下列问题:
(1)甲乙两地之间的距离为______千米;
(2)求快车和慢车的速度;
(3)求线段DE所表示的y与x之间的函数关系式,并写出自变量x的取值范围.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,某数学活动小组选定测量小河对岸大树BC的高度,他们在斜坡上D处测得大树顶端B的仰角是30,朝大树方向下坡走6米到达坡底A处,在A处测得大树顶端B的仰角是48°. 若坡角∠FAE=30°,求大树的高度. (结果保留整数,参考数据:sin48°≈0.74,cos48°≈0.67,tan48°≈1.11,
≈1.73)
相关试题