【题目】在△ABC中,∠ACB=90°,AC=BC,AB=2,现将一块三角板的直角顶点放在AB的中点D处,两直角边分别与直线AC,直线BC相交于点E,F,我们把DE⊥AC时的位置定为起始位置(如图1),将三角板绕点D顺时针方向旋转一个角度α(0°<α<90°).
(1)如图2,在旋转过程中,当点E在线段AC上时,试判别△DEF的形状,并说明理由;
(2)设直线ED交直线BC于点G,在旋转过程中,是否存在点G,使得△EFG为等腰三角形?若存在,求出CG的长,若不存在,说明理由.
![]()
参考答案:
【答案】(1)△DEF等腰直角三角形,理由见解析;(2)见解析.
【解析】
(1)连接CD,根据等腰直角三角形的性质得出CD平分∠C,CD⊥AB,进而证得△DCE≌△DFB,从而证得DE=DF,即可判定△DEF是等腰直角三角形.
(2)分三种情况分别讨论,可得出△EFG为等腰三角形时CG的长.
解:(1)△DEF等腰直角三角形.
证明:如图2,∵AC=BC,∠C=90°,D为AB中点,连接CD,
∴CD平分∠C,CD⊥AB,
∵∠DCB=∠B=45°,
∴CD=DB=1,
∵∠EDC+∠CDF=∠CDF+∠FDB=90°,
∴∠EDC=∠FDB,
在△DCE和△DFB中,
,
∴△DCE≌△DFB(ASA),
∴DE=DF,
∴△DEF是等腰直角三角形.
(2)如图3a,当G在线段CB延长线上时,
![]()
∵∠FGE<45°,∠FEG=45°,∠EFG>90°
∴△EFG不可能是等腰三角形;
如图3b,当G与C重合时,E与A重合,F与C重合,
此时FE=FG,CG=
,
![]()
如图3c,当G在线段BC上时,
![]()
∵∠EGF>45°,∠EFG>45°,∠FEG=45°,
∴只能EF=EG,
∵EC⊥FG,
∴FC=CG,
∵∠EDF=90°,
∴∠FDG=90°,
∴DC=
FG=CG,
∴CG=1;
综上,CG的值为
或1.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知∠MON=30°,B为OM上一点,BA⊥ON于A,四边形ABCD为正方形,P为射线BM上一动点,连结CP,将CP绕点C顺时针方向旋转90°得CE,连结BE,若AB=4,则BE的最小值为 .

-
科目: 来源: 题型:
查看答案和解析>>【题目】在湖边高出水面50 m的山顶A处看见一艘飞艇停留在湖面上空某处,观察到飞艇底部标志P处的仰角为45°,又观其在湖中之像的俯角为60°.则飞艇离开湖面的高度( )

A.
B.
C.
D.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,直线AB和CD交于点O,OE⊥AB,垂足为点O,OP平分∠EOD,∠AOD=144°.
(1)求∠AOC与∠COE的度数;
(2)求∠BOP的度数.

【答案】(1)∠AOC=36°,∠COE=54°,(2)∠BOP=27°.
【解析】
(1)由邻补角定义,可求得得∠AOC度数,由垂直定义,可得∠AOE=∠BOE=90°,由余角定义可求得∠COE;
(2)由邻补角定义可得∠DOE度数,由OO平分∠DOE,可得∠EOP度数,再由余角定义可求得∠BOP度数.
(1)∵∠AOC+∠AOD=180°,∠AOD=144°,
∴∠AOC=180°-∠AOD=180°-144°=36°,
∵OE⊥AB,
∴∠AOE=∠BOE=90°,
∴∠COE=∠AOE-∠AOC=90°-36°=54°,
(2)∵∠COE+∠DOE=180°,
∴∠DOE=180°-∠COE=180°-54°=126°,
∵OO平分∠DOE,
∴∠EOP=
∠DOE=
×126°=63°,∴∠BOP=∠BOE-∠EOP=90°-63°=27°.
【点睛】
本题考查了对顶角、邻补角以及垂线的性质,是基础知识要熟练掌握.
【题型】解答题
【结束】
27【题目】如表为某市居民每月用水收费标准,(单位:元/m3).
用水量
单价
0<x≤20
a
剩余部分
a+1.1
(1)某用户1月用水10立方米,共交水费26元,则a= 元/m3;
(2)在(1)的条件下,若该用户2月用水25立方米,则需交水费 元;
(3)在(1)的条件下,若该用户水表3月份出了故障,只有70%的用水量记入水表中,该用户3月份交了水费81.6元.请问该用户实际用水多少立方米?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,二次函数y=ax2+bx+c的图象与x轴的交点的横坐标分别为﹣1,3,则下列结论正确的个数有( ) ①ac<0;②2a+b=0;③4a+2b+c>0;④对于任意x均有ax2+bx≥a+b.

A.1
B.2
C.3
D.4 -
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,直线y=
x﹣3分别与x轴、y轴分别交于点A和点B,M是OB上一点,若将△ABM沿AM折叠,点B恰好落在x轴上的点B′处,则直线B′M的解析式为_____.
-
科目: 来源: 题型:
查看答案和解析>>【题目】在一次消防演习中,消防员架起一架25米长的云梯,如图斜靠在一面墙上,梯子底端离墙7米.

(1)求这个梯子的顶端距地面有多高?
(2)如果消防员接到命令,要求梯子的顶端下降4米(云梯长度不变),那么云梯的底部在水平方向应滑动多少米?
相关试题