【题目】在湖边高出水面50 m的山顶A处看见一艘飞艇停留在湖面上空某处,观察到飞艇底部标志P处的仰角为45°,又观其在湖中之像的俯角为60°.则飞艇离开湖面的高度( )![]()
A.![]()
B.![]()
C.![]()
D.![]()
参考答案:
【答案】D
【解析】解:设AE=xm,在Rt△AEP中∠PAE=45°,则∠P=45°,
∴PE=AE=x,
∵山顶A处高出水面50m,
∴OE=50m,
∴OP′=OP=PE+OE=x+50,
∵∠P′AE=60°,
∴P′E=tan60°AE=
x,
∴OP′=P′E﹣OE=
x﹣50,
∴x+50=
x﹣50,
解得:x=50(
+1)(m),
∴PO=PE+OE=50(
+1+50=50
+100(m),
即飞艇离开湖面的高度是(50
+100)m;
故选:D.
【考点精析】认真审题,首先需要了解关于方向角问题(指北或指南方向线与目标方向 线所成的小于90°的水平角,叫做方向角).
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,AB为⊙O的内接正多边形的一边,已知∠OAB=70°,则这个正多边形的内角和为 .

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC中,∠C=90°,CA=CB,D为AC上的一点,AD=2CD,AE⊥AB交BD的延长线于E,则
= . 
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知∠MON=30°,B为OM上一点,BA⊥ON于A,四边形ABCD为正方形,P为射线BM上一动点,连结CP,将CP绕点C顺时针方向旋转90°得CE,连结BE,若AB=4,则BE的最小值为 .

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,直线AB和CD交于点O,OE⊥AB,垂足为点O,OP平分∠EOD,∠AOD=144°.
(1)求∠AOC与∠COE的度数;
(2)求∠BOP的度数.

【答案】(1)∠AOC=36°,∠COE=54°,(2)∠BOP=27°.
【解析】
(1)由邻补角定义,可求得得∠AOC度数,由垂直定义,可得∠AOE=∠BOE=90°,由余角定义可求得∠COE;
(2)由邻补角定义可得∠DOE度数,由OO平分∠DOE,可得∠EOP度数,再由余角定义可求得∠BOP度数.
(1)∵∠AOC+∠AOD=180°,∠AOD=144°,
∴∠AOC=180°-∠AOD=180°-144°=36°,
∵OE⊥AB,
∴∠AOE=∠BOE=90°,
∴∠COE=∠AOE-∠AOC=90°-36°=54°,
(2)∵∠COE+∠DOE=180°,
∴∠DOE=180°-∠COE=180°-54°=126°,
∵OO平分∠DOE,
∴∠EOP=
∠DOE=
×126°=63°,∴∠BOP=∠BOE-∠EOP=90°-63°=27°.
【点睛】
本题考查了对顶角、邻补角以及垂线的性质,是基础知识要熟练掌握.
【题型】解答题
【结束】
27【题目】如表为某市居民每月用水收费标准,(单位:元/m3).
用水量
单价
0<x≤20
a
剩余部分
a+1.1
(1)某用户1月用水10立方米,共交水费26元,则a= 元/m3;
(2)在(1)的条件下,若该用户2月用水25立方米,则需交水费 元;
(3)在(1)的条件下,若该用户水表3月份出了故障,只有70%的用水量记入水表中,该用户3月份交了水费81.6元.请问该用户实际用水多少立方米?
-
科目: 来源: 题型:
查看答案和解析>>【题目】在△ABC中,∠ACB=90°,AC=BC,AB=2,现将一块三角板的直角顶点放在AB的中点D处,两直角边分别与直线AC,直线BC相交于点E,F,我们把DE⊥AC时的位置定为起始位置(如图1),将三角板绕点D顺时针方向旋转一个角度α(0°<α<90°).
(1)如图2,在旋转过程中,当点E在线段AC上时,试判别△DEF的形状,并说明理由;
(2)设直线ED交直线BC于点G,在旋转过程中,是否存在点G,使得△EFG为等腰三角形?若存在,求出CG的长,若不存在,说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,二次函数y=ax2+bx+c的图象与x轴的交点的横坐标分别为﹣1,3,则下列结论正确的个数有( ) ①ac<0;②2a+b=0;③4a+2b+c>0;④对于任意x均有ax2+bx≥a+b.

A.1
B.2
C.3
D.4
相关试题