【题目】如图,已知正方形ABCD中,以BF为底向正方形外侧作等腰直角三角形BEF,连接DF,取DF的中点G,连接EG,CG.
![]()
(1)如图1,当点A与点F重合时,猜想EG与CG的数量关系为 ,EG与CG的位置关系为 ,请证明你的结论.
(2)如图2,当点F在AB上(不与点A重合)时,(1)中结论是否仍然成立?请说明理由;如图3,点F在AB的左侧时,(1)中的结论是否仍然成立?直接做出判断,不必说明理由.
(3)在图2中,若BC=4,BF=3,连接EC,求
的面积.
参考答案:
【答案】(1)EG=CG,EG⊥CG;(2)当点F在AB上(不与点A重合)时,(1)中结论仍然成立,理由见解析,点F在AB的左侧时,(1)中的结论仍然成立;(3)S△CEG=
.
【解析】
(1)过E作EM⊥AD交AD的延长线于M,证明△AME是等腰直角三角形,得出AM=EM=
AE=
AB,证出DG=AG=
AD=AM=EM,得出GM=CD,证明△GEM≌△CGD(SAS),得出EG=CG,∠EGM=∠GCD,证出∠CGE=180°-90°=90°,即可得出EG⊥CG;
(2)延长EG至H,使HG=EG,连接DH、CH、CE,证明△EFG≌△HDG(SAS),得出EF=HD,∠EFG=∠HDG,证明△CBE≌△CDH(SAS),得出CE=CH,∠BCE=∠DCH,得出∠ECH=∠BCD=90°,证明△ECH是等腰直角三角形,得出CG=
EH=EG,EG⊥CG;延长EG至H,使HG=EG,连接DH、CH、CE,同理可证CG=
EH=EG,EG⊥CG;
(3)作EM垂直于CB的延长线与M,先求出BM,EM的值,即可根据勾股定理求出CE的长度,从而求出CG的长,即可求出面积.
解:(1)EG=CG,EG⊥CG;理由如下:
过E作EM⊥AD交AD的延长线于M,如图1所示:
则∠M=90°,
∵四边形ABCD是正方形,
∴AB=AD=CD,∠BAD=∠D=90°,
∴∠BAM=90°,
∵△BEF是等腰直角三角形,
∴∠BAE=45°,AE=
AB,
∴∠MAE=45°,
∴△AME是等腰直角三角形,
∴AM=EM=
AE=
AB,
∵G是DF的中点,
∴DG=AG=
AD=AM=EM,
∴GM=CD,
在△GEM和△CGD中,
,
∴△GEM≌△CGD(SAS),
∴EG=CG,∠EGM=∠GCD,
∵∠GCD+∠DGC=90°,
∴∠EGM+∠DGC=90°,
∴∠CGE=180°-90°=90°,
∴EG⊥CG;
![]()
(2)当点F在AB上(不与点A重合)时,(1)中的结论仍然成立,理由如下:
延长EG至H,使HG=EG,连接DH、CH、CE,如图2所示:
∵G是DF的中点,
∴FG=DG,
在△EFG和△HDG中,
,
∴△EFG≌△HDG(SAS),
∴EF=HD,∠EFG=∠HDG,
∵△BEF是等腰直角三角形,
∴EF=BE,∠BFE=∠FBE=45°,
∴BE=DH,
∵四边形ABCD是正方形,
∴AB∥CD,∠ABC=∠BCD=90°,BC=CD,
∴∠AFD=∠CDG,
∴∠AFE=∠CDH=135°,
∵∠CBE=90°+45°=135°,
∴∠CBE=∠CDH,
在△CBE和△CDH中,
,
∴△CBE≌△CDH(SAS),
∴CE=CH,∠BCE=∠DCH,
∴∠ECH=∠BCD=90°,
∴△ECH是等腰直角三角形,
∵EG=HG,
∴CG=
EH=EG,EG⊥CG;
![]()
点F在AB的左侧时,(1)中的结论仍然成立,理由如下:
延长EG至H,使HG=EG,连接DH、CH、CE,如图3所示:
∵G是DF的中点,
∴FG=DG,
在△EFG和△HDG中,
,
∴△EFG≌△HDG(SAS),
∴EF=HD,∠EFG=∠HDG,
∵△BEF是等腰直角三角形,
∴EF=BE,∠BEF=90°,
∴BE=DH,
∵四边形ABCD是正方形,
∴AB∥CD,∠ABC=∠BCD=90°,BC=CD,
∴∠BNF=∠CDG,
∵∠EFG+∠BNF+∠BEF+∠ABE=∠HDG+∠CDG+∠CDH=360°,
∴∠BEF+∠ABE=∠CDH,
∴∠ABC+∠ABE=∠CDH,即∠CBE=∠CDH,
在△CBE和△CDH中,
,
∴△CBE≌△CDH(SAS),
∴CE=CH,∠BCE=∠DCH,
∴∠ECH=∠BCD=90°,
∴△ECH是等腰直角三角形,
∵EG=HG,
∴CG=
EH=EG,EG⊥CG;
![]()
(3)如下图所示:作EM垂直于CB的延长线与M,
∵△BEF为等腰直角三角形,BF=3,
∴BE=
,∠ABE=45°,
∵EM⊥BM,AB⊥CM,
∴∠EBM=45°,
∴△EMB为等腰直角三角形,
∴EM=BM=
,
∵BC=4,
∴CM=
,
∴CE=
,
由(2)知,△GEC为等腰直角三角形,
∴CG=EG=
,
∴S△CEG=
.
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】某小组作“用频率估计概率的实验时,统计了某一结果出现的频率,绘制了如图所示的折线统计图,则符合这一结果的实验最有可能的是()

A. 掷一个质地均匀的正六面体骰子,向上的面点数是4
B. 一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃
C. 暗箱中有1个红球和2个黄球,它们只有颜色上的区别,从中任取一球是黄球
D. 在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在边长为2的正方形ABCD中剪去一个边长为1的小正方形CEFG,动点P从点A出发,沿A→D→E→F→G→B的路线绕多边形的边匀速运动到点B时停止(不含点A和点B),则△ABP的面积S随着时间t变化的函数图象大致是( )

A.

B.

C.

D.

-
科目: 来源: 题型:
查看答案和解析>>【题目】直线y=x-6与x轴、y轴分别交于点A、B,点E从B点,出发以每秒1个单位的速度沿线段BO向O点移动(与B、O点不重合),过E作EF//AB,交x轴于F.将四边形ABEF沿EF折叠,得到四边形DCEF,设点E的运动时间为t秒.
(1)①直线y=x-6与坐标轴交点坐标是A(_____,______),B(______,_____);
②画出t=2时,四边形ABEF沿EF折叠后的图形(不写画法);
(2)若CD交y轴于H点,求证:四边形DHEF为平行四边形;并求t为何值时,四边形DHEF为菱形(计算结果不需化简);
(3)连接AD,BC四边形ABCD是什么图形,并求t为何值时,四边形ABCD的面积为36?

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,四边形OABC是菱形,点C的坐标为(4,0),∠AOC=60°,垂直于x轴的直线l从y轴出发,沿x轴正方向以每秒1个单位长度的速度向右平移,设直线l与菱形OABC的两边分别交于点M,N(点M在点N的上方),若△OMN的面积为S,直线l的运动时间为t 秒(0≤t≤4),则能大致反映S与t的函数关系的图象是( )

A.
B.
C.
D.
-
科目: 来源: 题型:
查看答案和解析>>【题目】为了贯彻落实国家关于增强青少年体质的计划,我市全面实施了义务教育学段中小学学生“饮用奶计划”的营养工程.某牛奶供应商拟提供A(原味)、B(草莓味)、C(核桃味)、D(菠萝味)、E(香橙味)等五种口味的学生奶供学生选择(所有学生奶盒形状、大小相同),为了解对学生奶口味的喜好情况,某初级中学九年级(1)班张老师对全班同学进行了调查统计,制成了如图所示的两幅不完整的统计图.
(1)该班共有多少人?
(2)求出喜好A和E学生奶口味的人数;
(3)该班五种口味的学生奶喜好人数组成一组统计数据,求出这组数据的平均数;
(4)将折线统计图补充完整.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,Rt△ABC中,∠BAC=90°,AB=AC,点D为BC的中点,点E、F分别在边AB和边AC上,且∠EDF=90°,则下列结论一定成立的是_______

①△ADF≌△BDE
②S四边形AEDF=
S△ABC③BE+CF=AD
④EF=AD
相关试题