【题目】直线y=x-6与x轴、y轴分别交于点A、B,点E从B点,出发以每秒1个单位的速度沿线段BO向O点移动(与B、O点不重合),过E作EF//AB,交x轴于F.将四边形ABEF沿EF折叠,得到四边形DCEF,设点E的运动时间为t秒.
(1)①直线y=x-6与坐标轴交点坐标是A(_____,______),B(______,_____);
②画出t=2时,四边形ABEF沿EF折叠后的图形(不写画法);
(2)若CD交y轴于H点,求证:四边形DHEF为平行四边形;并求t为何值时,四边形DHEF为菱形(计算结果不需化简);
(3)连接AD,BC四边形ABCD是什么图形,并求t为何值时,四边形ABCD的面积为36?
![]()
参考答案:
【答案】(1)①6,0,0,-6;②见详解;(2)证明见详解,当
时,四边形DHEF为菱形;(3)四边形ABCD是矩形,当
时,四边形ABCD的面积为36.
【解析】
(1)①令
求出x的值即可得到A的坐标,令
求出y的值即可得到B的坐标;
②先求出t=2时E,F的坐标,然后找到A,B关于EF的对称点,即可得到折叠后的图形;
(2)先利用对称的性质得出
,然后利用平行线的性质和角度之间的关系得出
,由此可证明四边形DHEF为平行四边形,要使四边形DHEF为菱形,只要
,利用
,然后表示出EF,建立一个关于t的方程进而求解即可;
(3)AB和CD关于EF对称,根据对称的性质可知四边形ABCD为平行四边形,由(2)知
,即可判断四边形ABCD的形状,由
,可知
,建立关于四边形ABCD面积的方程解出t的值即可.
(1)①令
,则
,解得
,
∴
;
令
, 则
,
∴
;
②当t=2时,
,图形如下:
![]()
(2)如图,
![]()
∵四边形DCEF与四边形ABEF关于直线EF对称,
,
.
,
.
,
,
,
,
即
轴,
,
∴四边形DHEF为平行四边形.
要使四边形DHEF为菱形,只需
,
,
,
.
又
,
,
,
解得
,
∴当
时,四边形DHEF为菱形;
(3)连接AD,BC,
![]()
∵AB和CD关于EF对称,
∴
,
∴四边形ABCD为平行四边形.
由(2)知
,
.
,
,
∴四边形ABCD为矩形.
∵
,
.
,
,
∴四边形ABCD的面积为
,
解得
,
∴当
时,四边形ABCD的面积为36.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,矩形ABCD的边平行于坐标轴,对角线BD经过坐标原点,点C在反比例函数y=
的图象上.若点A的坐标为(﹣2,﹣2),则k=( )
A. 2 B. 4 C. 8 D. 16
-
科目: 来源: 题型:
查看答案和解析>>【题目】某小组作“用频率估计概率的实验时,统计了某一结果出现的频率,绘制了如图所示的折线统计图,则符合这一结果的实验最有可能的是()

A. 掷一个质地均匀的正六面体骰子,向上的面点数是4
B. 一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃
C. 暗箱中有1个红球和2个黄球,它们只有颜色上的区别,从中任取一球是黄球
D. 在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在边长为2的正方形ABCD中剪去一个边长为1的小正方形CEFG,动点P从点A出发,沿A→D→E→F→G→B的路线绕多边形的边匀速运动到点B时停止(不含点A和点B),则△ABP的面积S随着时间t变化的函数图象大致是( )

A.

B.

C.

D.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知正方形ABCD中,以BF为底向正方形外侧作等腰直角三角形BEF,连接DF,取DF的中点G,连接EG,CG.

(1)如图1,当点A与点F重合时,猜想EG与CG的数量关系为 ,EG与CG的位置关系为 ,请证明你的结论.
(2)如图2,当点F在AB上(不与点A重合)时,(1)中结论是否仍然成立?请说明理由;如图3,点F在AB的左侧时,(1)中的结论是否仍然成立?直接做出判断,不必说明理由.
(3)在图2中,若BC=4,BF=3,连接EC,求
的面积. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,四边形OABC是菱形,点C的坐标为(4,0),∠AOC=60°,垂直于x轴的直线l从y轴出发,沿x轴正方向以每秒1个单位长度的速度向右平移,设直线l与菱形OABC的两边分别交于点M,N(点M在点N的上方),若△OMN的面积为S,直线l的运动时间为t 秒(0≤t≤4),则能大致反映S与t的函数关系的图象是( )

A.
B.
C.
D.
-
科目: 来源: 题型:
查看答案和解析>>【题目】为了贯彻落实国家关于增强青少年体质的计划,我市全面实施了义务教育学段中小学学生“饮用奶计划”的营养工程.某牛奶供应商拟提供A(原味)、B(草莓味)、C(核桃味)、D(菠萝味)、E(香橙味)等五种口味的学生奶供学生选择(所有学生奶盒形状、大小相同),为了解对学生奶口味的喜好情况,某初级中学九年级(1)班张老师对全班同学进行了调查统计,制成了如图所示的两幅不完整的统计图.
(1)该班共有多少人?
(2)求出喜好A和E学生奶口味的人数;
(3)该班五种口味的学生奶喜好人数组成一组统计数据,求出这组数据的平均数;
(4)将折线统计图补充完整.

相关试题