【题目】如图,在△ABC中,已知∠ACB=130°,∠BAC=20°,BC=2,以点C为圆心,CB为半径的圆交AB于点D,则BD的长为 . ![]()
参考答案:
【答案】![]()
【解析】解:如图,作CE⊥AB于E. ∵∠B=180°﹣∠A﹣∠ACB=180°﹣20°﹣130°=30°,
在RT△BCE中,∵∠CEB=90°,∠B=30°,BC=2,
∴CE=
BC=1,BE=
CE=
,
∵CE⊥BD,
∴DE=EB,
∴BD=2EB=2
.
故答案为2
.![]()
如图,作CE⊥AB于E,在RT△BCE中利用30度性质即可求出BE,再根据垂径定理可以求出BD.本题考查垂径定理、三角形内角和定理等知识,解题的关键是根据垂径定理添加辅助线,记住直角三角形30度角性质,属于基础题,中考常考题型.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,AB是⊙O的直径,点C、D在⊙O上,∠A=2∠BCD,点E在AB的延长线上,∠AED=∠ABC

(1)求证:DE与⊙O相切;
(2)若BF=2,DF=
,求⊙O的半径. -
科目: 来源: 题型:
查看答案和解析>>【题目】阅读下面材料:
小明遇到这样一个问题:如图1,△ABC中,AB=AC,点D在BC边上,∠DAB=∠ABD,BE⊥AD,垂足为E,求证:BC=2AE.
小明经探究发现,过点A作AF⊥BC,垂足为F,得到∠AFB=∠BEA,从而可证△ABF≌△BAE(如图2),使问题得到解决.
(1)根据阅读材料回答:△ABF与△BAE全等的条件是 AAS(填“SSS”、“SAS”、“ASA”、“AAS”或“HL”中的一个)
参考小明思考问题的方法,解答下列问题:
(2)如图3,△ABC中,AB=AC,∠BAC=90°,D为BC的中点,E为DC的中点,点F在AC的延长线上,且∠CDF=∠EAC,若CF=2,求AB的长;
(3)如图4,△ABC中,AB=AC,∠BAC=120°,点D、E分别在AB、AC边上,且AD=kDB(其中0<k<
),∠AED=∠BCD,求
的值(用含k的式子表示). -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系xOy中,抛物线y=x2+
与y轴相交于点A,点B与点O关于点A对称
(1)填空:点B的坐标是;
(2)过点B的直线y=kx+b(其中k<0)与x轴相交于点C,过点C作直线l平行于y轴,P是直线l上一点,且PB=PC,求线段PB的长(用含k的式子表示),并判断点P是否在抛物线上,说明理由;
(3)在(2)的条件下,若点C关于直线BP的对称点C′恰好落在该抛物线的对称轴上,求此时点P的坐标. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,一条直线与反比例函数y=
(x>0)的图象交于两点A、B,与x轴交于点C,且点B是AC的中点,分别过两点A、B作x轴的平行线,与反比例函数y=
(x>0)的图象交于两点D、E,连接DE,则四边形ABED的面积为 . 
-
科目: 来源: 题型:
查看答案和解析>>【题目】计算:2sin30°+3﹣1+(
﹣1)0﹣
. -
科目: 来源: 题型:
查看答案和解析>>【题目】某校对七、八、九年级的学生进行体育水平测试,成绩评定为优秀、良好、合格、不合格四个等第.为了解这次测试情况,学校从三个年级随机抽取200名学生的体育成绩进行统计分析.相关数据的统计图、表如下:
各年级学生成绩统计表
优秀
良好
合格
不合格
七年级
a
20
24
8
八年级
29
13
13
5
九年级
24
b
14
7
根据以上信息解决下列问题:

(1)在统计表中,a的值为 , b的值为;
(2)在扇形统计图中,八年级所对应的扇形圆心角为度;
(3)若该校三个年级共有2000名学生参加考试,试估计该校学生体育成绩不合格的人数.
相关试题