【题目】如图,在平面直角坐标系xOy中,抛物线y=x2+
与y轴相交于点A,点B与点O关于点A对称![]()
(1)填空:点B的坐标是;
(2)过点B的直线y=kx+b(其中k<0)与x轴相交于点C,过点C作直线l平行于y轴,P是直线l上一点,且PB=PC,求线段PB的长(用含k的式子表示),并判断点P是否在抛物线上,说明理由;
(3)在(2)的条件下,若点C关于直线BP的对称点C′恰好落在该抛物线的对称轴上,求此时点P的坐标.
参考答案:
【答案】
(1)(0,
)
(2)
解:∵B点坐标为(0,
),
∴直线解析式为y=kx+
,令y=0可得kx+
=0,解得x=﹣
,
∴OC=﹣
,
∵PB=PC,
∴点P只能在x轴上方,
如图1,过B作BD⊥l于点D,设PB=PC=m,
![]()
则BD=OC=﹣
,CD=OB=
,
∴PD=PC﹣CD=m﹣
,
在Rt△PBD中,由勾股定理可得PB2=PD2+BD2,
即m2=(m﹣
)2+(﹣
)2,解得m=
+
,
∴PB
+
,
∴P点坐标为(﹣
,
+
),
当x=﹣
时,代入抛物线解析式可得y=
+
,
∴点P在抛物线上;
(3)
解:如图2,连接CC′,
![]()
∵l∥y轴,
∴∠OBC=∠PCB,
又PB=PC,
∴∠PCB=∠PBC,
∴∠PBC=∠OBC,
又C、C′关于BP对称,且C′在抛物线的对称轴上,即在y轴上,
∴∠PBC=∠PBC′,
∴∠OBC=∠CBP=∠C′BP=60°,
在Rt△OBC中,OB=
,则BC=1
∴OC=
,即P点的横坐标为
,代入抛物线解析式可得y=(
)2+
=1,
∴P点坐标为(
,1)
【解析】解:(1)∵抛物线y=x2+
与y轴相交于点A,
∴A(0,
),
∵点B与点O关于点A对称,
∴BA=OA=
,
∴OB=
,即B点坐标为(0,
),
所以答案是:(0,
);
【考点精析】掌握二次函数的图象和二次函数的性质是解答本题的根本,需要知道二次函数图像关键点:1、开口方向2、对称轴 3、顶点 4、与x轴交点 5、与y轴交点;增减性:当a>0时,对称轴左边,y随x增大而减小;对称轴右边,y随x增大而增大;当a<0时,对称轴左边,y随x增大而增大;对称轴右边,y随x增大而减小.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,抛物线y=x2﹣3x+
与x轴相交于A、B两点,与y轴相交于点C,点D是直线BC下方抛物线上一点,过点D作y轴的平行线,与直线BC相交于点E 
(1)求直线BC的解析式;
(2)当线段DE的长度最大时,求点D的坐标. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,AB是⊙O的直径,点C、D在⊙O上,∠A=2∠BCD,点E在AB的延长线上,∠AED=∠ABC

(1)求证:DE与⊙O相切;
(2)若BF=2,DF=
,求⊙O的半径. -
科目: 来源: 题型:
查看答案和解析>>【题目】阅读下面材料:
小明遇到这样一个问题:如图1,△ABC中,AB=AC,点D在BC边上,∠DAB=∠ABD,BE⊥AD,垂足为E,求证:BC=2AE.
小明经探究发现,过点A作AF⊥BC,垂足为F,得到∠AFB=∠BEA,从而可证△ABF≌△BAE(如图2),使问题得到解决.
(1)根据阅读材料回答:△ABF与△BAE全等的条件是 AAS(填“SSS”、“SAS”、“ASA”、“AAS”或“HL”中的一个)
参考小明思考问题的方法,解答下列问题:
(2)如图3,△ABC中,AB=AC,∠BAC=90°,D为BC的中点,E为DC的中点,点F在AC的延长线上,且∠CDF=∠EAC,若CF=2,求AB的长;
(3)如图4,△ABC中,AB=AC,∠BAC=120°,点D、E分别在AB、AC边上,且AD=kDB(其中0<k<
),∠AED=∠BCD,求
的值(用含k的式子表示). -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,已知∠ACB=130°,∠BAC=20°,BC=2,以点C为圆心,CB为半径的圆交AB于点D,则BD的长为 .

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,一条直线与反比例函数y=
(x>0)的图象交于两点A、B,与x轴交于点C,且点B是AC的中点,分别过两点A、B作x轴的平行线,与反比例函数y=
(x>0)的图象交于两点D、E,连接DE,则四边形ABED的面积为 . 
-
科目: 来源: 题型:
查看答案和解析>>【题目】计算:2sin30°+3﹣1+(
﹣1)0﹣
.
相关试题