【题目】某公司投资1200万元购买了一条新生产线生产新产品.根据市场调研,生产每件产品需要成本50元,该产品进入市场后不得低于80元/件且不得超过160元/件,该产品销售量y(万件)与产品售价x(元)之间的关系如图所示.
![]()
(1)求y与x之间的函数关系式,并写出x的取值范围;
(2)第一年公司是盈利还是亏损?求出当盈利最大或亏损最小时的产品售价;
(3)在(2)的前提下,即在第一年盈利最大或者亏损最小时,公司第二年重新确定产品售价,能否使前两年盈利总额达790万元?若能,求出第二年产品售价;若不能,说明理由.
参考答案:
【答案】(1)y=﹣
x+25,80≤x≤160.(2)第一年公司是亏损,且当亏损最小时的产品售价为150元/件.(3)第二年售价是140元/件或160/件.
【解析】
试题分析:(1)设y=kx+b,则由图象可求得k,b,从而得出y与x之间的函数关系式,并写出x的取值范围80≤x≤160;
(2)设公司第一年获利W万元,则可表示出W=﹣
(x﹣180)2﹣60≤﹣60,则第一年公司亏损了,当产品售价定为180元/件时,亏损最小,最小亏损为60万元;
(3)假设两年共盈利1340万元,则﹣
x2+36x﹣1800﹣60=1340,解得x的值,根据100≤x≤180,则x=160时,公司两年共盈利达1340万元.
解:(1)设y=kx+b.由图象可得:
,
解得:
.
所以y=﹣
x+25,
故x的取值范围是80≤x≤160.
(2)设该公司第一年获利S万元,则
S=(x﹣50)×y﹣1200=(x﹣50)(﹣
x+25)﹣1200
=﹣
x2+30x﹣2450
=﹣
(x﹣150)2﹣200≤﹣200,
所以第一年公司是亏损,且当亏损最小时的产品售价为150元/件.
(3)由题意可列方程(x﹣50)(﹣
x+25)+(﹣200)=790,
解得:x1=140,x2=160.
两个x的值都在80≤x≤160内,
所以第二年售价是140元/件或160/件.
-
科目: 来源: 题型:
查看答案和解析>>【题目】(1)计算:|﹣5|+(﹣3)2﹣(π﹣3.14)0×(﹣
)﹣2÷(﹣2)2017(2)先化简,再求值:[b(a﹣3b)﹣a(3a+2b)+(3a﹣b)(2a﹣3b)]÷(﹣3a),其中a,b满足2a﹣8b﹣5=0.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,四边形ABCD的对角线AC,BD交于O点,且AB
CD,那么图中的全等三角形有( )
A.2对 B.3对 C.4对 D.5对
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,点D在BC上,AB=AC=BD,AD=DC,则∠BAC的度数是 .

-
科目: 来源: 题型:
查看答案和解析>>【题目】轮船沿江从A港顺流行驶到B港,比从B港返回A港少用3小时,若船速为26千米/时,水速为2千米/时,求A港和B港相距多少千米.设A港和B港相距x千米.根据题意,可列出的方程是( )
A.
B.

C.
D.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,抛物线的顶点D的坐标为(1,﹣4),与y轴交于点C(0,﹣3),与x轴交于A、B两点.

(1)求该抛物线的函数关系式;
(2)在抛物线上存在点P(不与点D重合),使得S△PAB=S△ABD,请求出P点的坐标.
-
科目: 来源: 题型:
查看答案和解析>>【题目】骰子是一种特别的数字立方体(见右图),它符合规则:相对两面的点数之和总是7,下面四幅图中可以折成符合规则的骰子的是( )

A.
B.
C.
D.
相关试题