【题目】如图,在△ABC中,已知∠C=90°,BC=6,AC=8,则它的内切圆半径是 ![]()
参考答案:
【答案】2
【解析】解:根据勾股定理得:AB=
=10,
设三角形ABC的内切圆O的半径是r,
∵圆O是直角三角形ABC的内切圆,
∴OD=OE,BF=BD,CD=CE,AE=AF,∠ODC=∠C=∠OEC=90°,
∴四边形ODCE是正方形,
∴OD=OE=CD=CE=r,
∴AC﹣r+BC﹣r=AB,
8﹣r+6﹣r=10,
∴r=2,
故答案为:2.
根据勾股定理求出AB,根据圆O是直角三角形ABC的内切圆,推出OD=OE,BF=BD,CD=CE,AE=AF,∠ODC=∠C=∠OEC=90°,证四边形ODCE是正方形,推出CE=CD=r,根据切线长定理得到AC﹣r+BC﹣r=AB,代入求出即可.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,直线AB、CD相交于点O,∠AOD=120°,FO⊥OD,OE平分∠BOD.
(1)求∠EOF的度数;
(2)试说明OB平分∠EOF.

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知Rt△ABC中,∠C=90°,AC=6,BC=8,点O和M分别为Rt△ABC的外心和内心,线段OM的长为
-
科目: 来源: 题型:
查看答案和解析>>【题目】某家居专营店用2730元购进A、B两种新型玻璃保温杯共60个,这两种玻璃保温杯的进价、标价如表所示:

(1)这两种玻璃保温杯各购进多少个?
(2)若A型玻璃保温杯按标价的9折出售,B型玻璃保温杯按标价的8.5折出售,且在运输过程中有2个A型、1个B型玻璃保温杯不慎损坏,不能进行销售,请问这批玻璃保温杯全部售出后,该家居专营店共获利多少元?
-
科目: 来源: 题型:
查看答案和解析>>【题目】在数轴上,图中点A表示-36,点B表示44,动点P、Q分别从A、B两点同时出发,相向而行,动点P、Q的运动速度比之是3∶2(速度单位:1个单位长度/秒).12秒后,动点P到达原点O,动点Q到达点C,设运动的时间为t(t>0)秒.
(1)求OC的长;
(2)经过t秒钟,P、Q两点之间相距5个单位长度,求t的值;
(3)若动点P到达B点后,以原速度立即返回,当P点运动至原点时,动点Q是否到达A点,若到达,求提前到达了多少时间,若未能到达,说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,Rt△ABC的内切圆⊙O与AB、BC、CA分别相切于点D、E、F,且∠ACB=90°,AB=5,BC=3,点P是边AC上的一动点,PH⊥AB,垂足为H.
(1)求⊙O的半径的长及线段AD的长;
(2)设PH=x,PC=y,求y关于x的函数关系式.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知△ABC中,∠ABC=45°,点D是BC边上一动点(与点B,C不重合),点E与点D关于直线AC对称,连结AE,过点B作BF⊥ED的延长线于点F.
(1)依题意补全图形;
(2)当AE=BD时,用等式表示线段DE与BF之间的数量关系,并证明.

相关试题