【题目】如图,在平面直角坐标系中,A(a,0),C(b,2),且满足(a+b)2+|a-b+4|=0,过点C作CB⊥x轴于B.
(1)如图1,求△ABC的面积.
(2)如图2,若过B作BD∥AC交y轴于D,在△ABC内有一点E,连接AE.DE,若∠CAE+∠BDE=∠EAO+∠EDO,求∠AED的度数.
(3)如图3,在(2)的条件下,DE与x轴交于点M,AC与y轴交于点F,作△AME的角平分线MP,在PE上有一点Q,连接QM,∠EAM+2∠PMQ=45°,当AE=2AM,FO=2QM时,求点E的纵坐标.
![]()
参考答案:
【答案】(1)4;(2)45°;(3)1
【解析】
(1)由题意可求a=-2,b=2,即可得点A,点C坐标,即可求△ABC的面积;
(2)根据题意可求∠CAE+∠BDE=∠EAO+∠EDO=45°,根据三角形内角和可求∠AED的度数;
(3)如图3,先根据三角形的中位线定理可得:QM=
,过E作EG⊥x轴于G,设∠PMQ=x,则∠EAM=45-2x,证明MQ⊥AE,利用面积法可得:S△AEM=
AEMQ=
AMEG,可得EG=1,即点E的纵坐标是1.
(1)∵(a+b)2≥0,|a-b+4|≥0,(a+b)2+|a-b+4|=0,
∴a=-b,a-b+4=0,
∴a=-2,b=2,
∵CB⊥AB
∴A(-2,0),B(2,0),C(2,2),
∴△ABC的面积=
×4×2=4;
(2)如图2,连接AD,
![]()
∵BD∥AC,
∴∠CAD+∠BDA=180°,
∵∠OAD+∠ODA=90°,
∴∠CAB+∠BDO=90°,
∵∠CAE+∠BDE=∠EAO+∠EDO,
∴∠CAE+∠BDE=∠EAO+∠EDO=45°,
△ADE中,∠AED=180°-(∠EAO+∠EDO)-(∠OAD+∠ODA)=180°-45°-90°=45°;
(3)如图3,
![]()
∵OF∥BC,OA=OB=2,
∴AF=FC,
∴OF=
BC=1,
∵OF=2QM,
∴QM=
,
过E作EG⊥x轴于G,
设∠PMQ=x,则∠EAM=45-2x,
由(2)知:∠EAM+∠EDO=45°,
∴∠EDO=45°-(45°-2x)=2x,
∴∠EMG=∠OMD=90°-2x,
∵PM平分∠AME,
∴∠AMP=∠PME=
=45°+x,
∴∠QPM=∠EAM+∠AMP=45°-2x+45°+x=90°-x,
∴∠QPM+∠PMQ=90°,
∴MQ⊥AE,
S△AEM=
AEMQ=
AMEG,
∵AE=2AM,
∴2AM
=AMEG,
∴EG=1,即点E的纵坐标是1.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知,如图,在△ABC中,∠B<∠C,AD,AE分别是△ABC的高和角平分线,
(1)若∠B=30°,∠C=50°.则∠DAE的度数是 .(直接写出答案)
(2)写出∠DAE、∠B、∠C的数量关系: ,并证明你的结论.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在
中,
,
,
,作斜边AB上中线CD,得到第1个三角形ACD;
于点E,作
斜边DB上中线EF,得到第2个三角形DEF;依次作下去
则第1个三角形的面积等于______,第n个三角形的面积等于______.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,直线y=x+m和抛物线y=x2+bx+c都经过点A(1,0),B(3,2).
(1)求m的值和抛物线的解析式;

(2)求不等式x2+bx+c>x+m的解集(直接写出答案);
(3)若M(a,y1),N(a+1,y2)两点都在抛物线y=x2+bx+c上,试比较y1与y2的大小.
-
科目: 来源: 题型:
查看答案和解析>>【题目】若将一幅三角板按如图所示的方式放置,则下列结论中不正确的是( )

A. ∠1=∠3 B. 如果∠2=30°,则有AC∥DE
C. 如果∠2=30°,则有BC∥AD D. 如果∠2=30°,必有∠4=∠C
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,将等边△ABC绕点C顺时针旋转120°得到△EDC,连接AD,BD.则下列结论:
①AC=AD;②BD⊥AC;③四边形ACED是菱形.
其中正确的个数是( )

A.0 B.1 C.2 D.3
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,正方形ABCD的边长为6,点E,F分别在AB,AD上,若CE=3
,且∠ECF=45°,则CF的长为( )
A. 2
B. 3
C.
D.

相关试题