【题目】某学校计划组织全校1500名师生外出参加集体活动.经过研究,决定租用当地租车公司一共60辆
、
两种型号客车作为交通工具.
下表是租车公司提供给学校有关两种型号客车的载客量和租金信息:
型号 | 载客量 | 租金单价 |
| 30人 | 400元 |
| 20人 | 300元 |
注:载客量指的是每辆客车最多可载该校师生的人数.
学校租用
型号客车
辆,租车总费用为
元.
(1)求
与
的函数解析式,请直接写出
的取值范围;
(2)若要使租车总费用不超过22000元,一共有几种租车方案?并结合函数性质说明哪种租车方案最省钱?
参考答案:
【答案】(1)
与
的函数解析式为
;(2)一共有11种租车方案,当租用
型车辆30辆,
型车辆30辆时,租车费用最省钱.
【解析】
(1)根据题意可以得到y与x的函数关系式,然后根据总人数可以求出x的取值范围,本题得以解决;
(2)根据题意可以得到关于x的不等式,然后根据一次函数的性质即可解答本题.
(1)由题意可得,
,
,
解得,
,
即
与
的函数解析式为
;
(2)由题意可得,
,
解得,
,
,
为整数,
、31、32、33、
、40,
共有11种租车方案,
,
随
的增大而增大,
当
时,
取得最小值,此时
,
,
答:一共有11种租车方案,当租用
型车辆30辆,
型车辆30辆时,租车费用最省钱.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知直线m∥n,点C是直线m上一点,点D是直线n上一点,CD与直线m、n不垂直,点P为线段CD的中点.
(1)操作发现:直线l⊥m,l⊥n,垂足分别为A、B,当点A与点C重合时(如图①所示),连接PB,请直接写出线段PA与PB的数量关系: .
(2)猜想证明:在图①的情况下,把直线l向上平移到如图②的位置,试问(1)中的PA与PB的关系式是否仍然成立?若成立,请证明;若不成立,请说明理由.
(3)延伸探究:在图②的情况下,把直线l绕点A旋转,使得∠APB=90°(如图③所示),若两平行线m、n之间的距离为2k.求证:PAPB=kAB.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,抛物线
:
与x轴交于A,B两点(点A在点B的左侧),将抛物线l在x轴下方部分沿x轴翻折,x轴上方的图像保持不变,就组成了函数
的图像.(1)若点A的坐标为(1,0).
①求抛物线
的表达式,并直接写出当x为何值时,函数
的值y随x的增大而增大;②如图2,若过A点的直线交函数
的图像于另外两点P,Q,且
,求点P的坐标;(2)当
时,若函数
的值y随x的增大而增大,直接写出h的取值范围.

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知M=(a+24)x3﹣10x2+10x+5是关于x的二次多项式,且二次项系数和一次项系数分别为b和c,在数轴上A、B、C三点所对应的数分别是a、b、c.

(1)则a= ,b= ,c= .
(2)有一动点P从点A出发,以每秒4个单位的速度向右运动,多少秒后,P到A、B、C的距离和为40个单位?
(3)在(2)的条件下,当点P移动到点B时立即掉头,速度不变,同时点T和点Q分别从点A和点C出发,向左运动,点T的速度1个单位/秒,点Q的速度5个单位/秒,设点P、Q、T所对应的数分别是xP、xQ、xT,点Q出发的时间为t,当
<t<
时,求2|xP﹣xT|+|xT﹣xQ|+2|xQ﹣xP|的值. -
科目: 来源: 题型:
查看答案和解析>>【题目】春暖花开,市民纷纷外出踏青,某种品牌鞋专卖店抓住机遇,利用10周年店庆对其中畅销的M款运动鞋进行促销,M款运动鞋每双的成本价为800元,标价为1200元.
(1)M款运动鞋每双最多降价多少元,才能使利润率不低于20%;
(2)该店以前每周共售出M款运动鞋100双,2018年3月的一个周末,恰好是该店的10周年店庆,这个周末M款运动鞋每双在标价的基础上降价
m%,结果这个周末卖出的M款运动鞋的数量比原来一周卖出的M款运动鞋的数量增加了
m%,这周周末的利润达到了40000元,求m的值. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知平面上点
,
,
,
(每三点都不在一条直线上).(1)经过这四点最多能确定 条直线.
(2)如图这四点表示公园四个地方,如果点
,
在公园里湖对岸两处,
,
在湖面上,要从
到
筑桥,从节省材料的角度考虑,应选择图中两条路中的哪一条?如果有人想在桥上较长时间观赏湖面风光,应选择哪一条?为什么?
-
科目: 来源: 题型:
查看答案和解析>>【题目】菱形
中,
,
是对角线,点
、
分别是边
、
上两个点,且满足
,连接
与
相交于点
.(1)如图1,求
的度数;(2)如图2,作
于
点,求证:
;(3)在满足(2)的条件下,且点
在菱形内部,若
,
,求菱形
的面积.
相关试题