【题目】如图,在△ABF中,以AB为直径的圆分别交边AF、BF于C、E两点,CD⊥AF.AC是∠DAB的平分线, ![]()
(1)求证:直线CD是⊙O的切线.
(2)求证:△FEC是等腰三角形.
参考答案:
【答案】
(1)解:连接OC,则∠CAO=∠ACO,
又∠FAC=∠CAO
∴∠FAC=∠ACO,
∴AF∥CO,
而CD⊥AF,
∴CO⊥CD,
即直线CD是⊙O的切线
(2)解:∵AB是⊙O的直径,
∴∠ACB=90°
又∠FAC=∠CAO
∴AF=AB(三线合一),
∴∠F=∠B,
∵四边形EABC是⊙O的内接四边形,
∵∠FEC+∠AEC=180°,∠B+∠AEC=180°
∴∠FEC=∠B
∴∠F=∠FEC,
即EC=FC
所以△FEC是等腰三角形.
![]()
【解析】(1)先判断出∠FAC=∠ACO,进而得出AF∥CO,即可得出结论;(2)先用等腰三角形的三线合一得出AF=AB.再用同角的补角相等得出∠FEC=∠B 即可得出结论.
【考点精析】根据题目的已知条件,利用等腰三角形的判定和圆周角定理的相关知识可以得到问题的答案,需要掌握如果一个三角形有两个角相等,那么这两个角所对的边也相等(简称:等角对等边).这个判定定理常用于证明同一个三角形中的边相等;顶点在圆心上的角叫做圆心角;顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角;一条弧所对的圆周角等于它所对的圆心角的一半.
-
科目: 来源: 题型:
查看答案和解析>>【题目】今年“中秋”节前,朵朵的妈妈去超市购买了大小、形状、重量等都相同的五仁和豆沙月饼若干,放入不透明的盒中,此时从盒中随机取出五仁月饼的概率为
;爸爸从盒中取出五仁月饼3只、豆沙粽子7只送给爷爷和奶奶后,这时随机取出五仁月饼的概率为
.
(1)请你用所学知识计算:妈妈买的五仁月饼和豆沙月饼各有多少只?
(2)若朵朵一次从盒内剩余月饼中任取2只,问恰有五仁月饼、豆沙月饼各1只的概率是多少?(用列表法或树状图计算) -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在⊙O中,弦AB所对的劣弧是圆周长的
,其中圆的半径为4cm,求: 
(1)求AB的长.
(2)求阴影部分的面积. -
科目: 来源: 题型:
查看答案和解析>>【题目】某闭合电路中,其两端电压恒定,电流I(A)与电阻R(Ω)图象如图所示,回答问题:

(1)写出电流I与电阻R之间的函数解析式.
(2)如果一个用电器的电阻为5Ω,其允许通过的最大电流是1A,那么这个用电器接在这个闭合电路中,会不会烧毁?说明理由.
(3)若允许的电流不超过4A时,那么电阻R的取值应该控制在什么范围? -
科目: 来源: 题型:
查看答案和解析>>【题目】阅读资料:我们把顶点在圆上,并且一边和圆相交、另一边和圆相切的角叫做弦切角,如图1∠ABC所示.同学们研究发现:P为圆上任意一点,当弦AC经过圆心O时,且AB切⊙O于点A,此时弦切角∠CAB=∠P(图2)
证明:∵AB切⊙O于点A,∴∠CAB=90°,又∵AC是直径,∴∠P=90°∴∠CAB=∠P
问题拓展:若AC不经过圆心O(如图3),该结论:弦切角∠CAB=∠P还成立吗?请说明理由.
知识运用:如图4,AD是△ABC中∠BAC的平分线,经过点A的⊙O与BC切于点D,与AB、AC分别相交于E、F.求证:EF∥BC. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,反比例函数y=
(x>0)的图象经过点A(2
,1),射线AB与反比例函数图象交与另一点B(1,a),射线AC与y轴交于点C,∠BAC=75°,AD⊥y轴,垂足为D.
(1)求k和a的值;
(2)直线AC的解析式;
(3)如图3,M是线段AC上方反比例函数图象上一动点,过M作直线l⊥x轴,与AC相交于N,连接CM,求△CMN面积的最大值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】
中,
,将线段AB绕点A按逆时针方向旋转
得到线段AD,其中
连结BD,CD,
.
若
,
,在图1中补全图形,并写出m值.
如图2,当
为钝角,
时,m值是否发生改变?证明你的猜想.
如图3,
,
,BD与AC相交于点O,求
与
的面积比.
相关试题