【题目】在△ABC中,∠BAC=90
,AB=AC.点D为直线BC上一动点(点D不与点B、C重合),以AD为直角边在AD右侧作等腰直角三角形ADE,使
DAE=90
,连结CE.
探究:如图①,当点D在线段BC上时,证明BC=CE+CD.
应用:在探究的条件下,若AB=
,CD=1,则△DCE的周长为_______.
拓展:(1)如图②,当点D在线段CB的延长线上时,BC、CD、CE之间的数量关系为_______.
(2)如图③,当点D在线段BC的延长线上时,BC、CD、CE之间的数量关系为_______.
![]()
参考答案:
【答案】探究:证明见解析;应用:
;拓展:(1)BC= CD-CE,(2)BC= CE-CD
【解析】试题分析:探究:判断出∠BAD=∠CAE,再用SAS即可得出结论;
应用:先算出BC,进而算出BD,再用勾股定理求出DE,即可得出结论;
拓展:(1)同探究的方法得出△ABD≌△ACE,得出BD=CE,即可得出结论;
(2)同探究的方法得出△ABD≌△ACE,得出BD=CE,即可得出结论.
试题解析:探究:∵∠BAC=90°,∠DAE=90°,
∴∠BAC=∠DAE.
∵∠BAC=∠BAD+∠DAC,∠DAE=∠CAE+∠DAC,
∴∠BAD=∠CAE.
∵AB=AC,AD=AE,
∴△ABD≌△ACE.
∴BD=CE.
∵BC=BD+CD,
∴BC=CE+CD.
应用:在Rt△ABC中,AB=AC=
,
∴∠ABC=∠ACB=45°,BC=2,
∵CD=1,
∴BD=BC-CD=1,
由探究知,△ABD≌△ACE,
∴∠ACE=∠ABD=45°,
∴∠DCE=90°,
在Rt△BCE中,CD=1,CE=BD=1,
根据勾股定理得,DE=
,
∴△DCE的周长为CD+CE+DE=2+![]()
故答案为:2+![]()
拓展:(1)同探究的方法得,△ABD≌△ACE.
∴BD=CE
∴BC=CD-BD=CD-CE,
故答案为BC=CD-CE;
(2)同探究的方法得,△ABD≌△ACE.
∴BD=CE
∴BC=BD-CD=CE-CD,
故答案为:BC=CE-CD.
-
科目: 来源: 题型:
查看答案和解析>>【题目】甲、乙两辆汽车分别从A、B两城同时沿高速公路驶向C城.已知A、C两城的路程为500千米,B、C两城的路程为450千米,甲车比乙车的速度快10千米/时,结果两辆车同时到达C城,求两车的速度.
-
科目: 来源: 题型:
查看答案和解析>>【题目】公元前6世纪古希腊的毕达哥拉斯学派有一种观点,即“万物皆数”,一切量都可以用整数或整数比(分数)表示,后来,当这一学派中的希帕索斯发现,边长为1的正方形的对角线的长度不能用整数或整数的比表示时,毕达哥拉斯学派感到惊恐不安,由此,引发了第一次数学危机,这儿“不能用整数或整数的比表示的数”指的是( )
A.有理数B.无理数C.合数D.质数
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知:二次函数y=x2+bx+3的图象经过点(3,0).
(1)求b的值;
(2)求出该二次函数图象的顶点坐标和对称轴;
(3)在所给坐标系中画出二次函数y=x2+bx+3的图象.

-
科目: 来源: 题型:
查看答案和解析>>【题目】﹣3﹣(﹣4)的结果是( )
A.1
B.﹣1
C.7
D.﹣7 -
科目: 来源: 题型:
查看答案和解析>>【题目】当前,“低头族”已成为热门话题之一,为了了解路边行人边走路边低头看手机的情况,应采用的收集数据的方式是_____;
A.对学校的同学发放问卷进行调查
B.对在路边行走的学生随机发放问卷进行调查
C.对在图书馆里看书的人发放问卷进行调查
D.对在路边行走的路人随机发放问卷进行调查
并说出你的理由_____.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在等腰三角形ABC中,AC=BC,分别以BC和AC为直角边向上作等腰直角三角形△BCD和△ACE,AE与BD相交于点F,连接CF并延长交AB于点G.求证:CG垂直平分AB.

相关试题