【题目】材料一:如图1,由课本91页例2画函数y=﹣6x与y=﹣6x+5可知,直线y=﹣6x+5可以由直线y=﹣6x向上平移5个单位长度得到由此我们得到正确的结论一:在直线L1:y=K1x+b1与直线L2:y=K2x+b2中,如果K1=K2 且b1≠b2 ,那么L1∥L2,反过来,也成立.
材料二:如图2,由课本92页例3画函数y=2x﹣1与y=﹣0.5x+1可知,利用所学知识一定能证出这两条直线是互相垂直的.由此我们得到正确的结论二:在直线L1:y=k1x+b1 与L2:y=k2x+b2 中,如果k1·k2=-1那么L1⊥L2,反过来,也成立
应用举例
已知直线y=﹣
x+5与直线y=kx+2互相垂直,则﹣
k=﹣1.所以k=6
解决问题
(1)请写出一条直线解析式______,使它与直线y=x﹣3平行.
(2)如图3,点A坐标为(﹣1,0),点P是直线y=﹣3x+2上一动点,当点P运动到何位置时,线段PA的长度最小?并求出此时点P的坐标.
![]()
参考答案:
【答案】(1)y=x;(2)当线段PA的长度最小时,点P的坐标为
.
【解析】
(1)由两直线平行可得出k1=k2=1、b1≠b2=﹣3,取b1=0即可得出结论;
(2)过点A作AP⊥直线y=﹣3x+2于点P,此时线段PA的长度最小,由两直线平行可设直线PA的解析式为y=
x+b,由点A的坐标利用待定系数法可求出直线PA的解析式,联立两直线解析式成方程组,再通过解方程组即可求出:当线段PA的长度最小时,点P的坐标.
.解:(1)∵两直线平行,
∴k1=k2=1,b1≠b2=﹣3,
∴该直线可以为y=x.
故答案为:y=x.
(2)过点A作AP⊥直线y=﹣3x+2于点P,此时线段PA的长度最小,如图所示.
∵直线PA与直线y=﹣3x+2垂直,
∴设直线PA的解析式为y=
x+b.
∵点A(﹣1,0)在直线PA上,
∴
×(﹣1)+b=0,解得:b=
,
∴直线PA的解析式为y=
x+
.
联立两直线解析式成方程组,得:
,解得:
.
∴当线段PA的长度最小时,点P的坐标为(
,
).
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,C为线段AB延长线上一点,D为线段BC上一点,CD=2BD,E为线段AC上一点,CE=2AE,若图中所有线段的长度之和是线段AD长度的7倍,则
的值为( )
A.
B.
C.
D.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在直角坐标系中,点A的坐标为(-2,0),OB=OA,且∠AOB=120°.
(1)求经过A、O、B三点的抛物线的解析式;
(2)在(1)中抛物线的对称轴上是否存在点C,使△OBC的周长最小?若存在,求出点C的坐标;若不存在,请说明理由;
(3)若点M为抛物线上一点,点N为对称轴上一点,是否存在点M、N使得A、O、M、N构成的四边形是平行四边形?若存在,求出点M的坐标;若不存在,请说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】张老师打算在小明和小白两位同学之间选一位同学参加数学竞赛,他收集了小明、小白近期10次数学考试成绩,并绘制了折线统计图(如图所示)
项目
众数
中位数
平均数
方差
最高分
小明
85
85
小白
70,100
85
100

(1)根据折线统计图,张老师绘制了不完整的统计表,请你补充完整统计表;
(2)你认为张老师会选择哪位同学参加比赛?并说明你的理由
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在
中,
,
,
平分
交于点
,
于点
,下列结论:①
;②
;③
;④点
在线段
的垂直平分线上,其中正确的个数有( )
A.4个B.3个C.2个D.1个
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系xOy中,二次函数y=ax2+bx﹣4(a≠0)的图象与x轴交于A(﹣2,0)、C(8,0)两点,与y轴交于点B,其对称轴与x轴交于点D.

(1)求该二次函数的解析式;
(2)如图1,连结BC,在线段BC上是否存在点E,使得△CDE为等腰三角形?若存在,求出所有符合条件的点E的坐标;若不存在,请说明理由;
(3)如图2,若点P(m,n)是该二次函数图象上的一个动点(其中m>0,n<0),连结PB,PD,BD,求△BDP面积的最大值及此时点P的坐标.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,A(-5,0),B(-3,0),点C在y轴的正半轴上,∠CBO=45°,CD∥AB.∠CDA=90°.点P从点Q(4,0)出发,沿x轴向左以每秒1个单位长度的速度运动,运动时时间t秒.

(1)求点C的坐标;
(2)当∠BCP=15°时,求t的值;
(3)以点P为圆心,PC为半径的⊙P随点P的运动而变化,当⊙P与四边形ABCD的边(或边所在的直线)相切时,求t的值.
相关试题