【题目】如图,C为线段AB延长线上一点,D为线段BC上一点,CD=2BD,E为线段AC上一点,CE=2AE,若图中所有线段的长度之和是线段AD长度的7倍,则
的值为( )
![]()
A.
B.
C.
D.![]()
参考答案:
【答案】A
【解析】
设CD=2BD=2x,CE=2AE=2y,则BD=x,AE=y,再用x、y表示出所有线段的长度之和;
进而用x、y表示出AD=AE+ED的长,据此结合题意得到等式,求出x、y的关系式,然后用x表示出AD、AC,从而求出
的值.
设CD=2BD=2x,CE=2AE=2y,
则BD=x,AE=y,
∵AC=AE+EC=3y,ED=CE-CD=2y-2x,
∴所有线段的长度之和为AE+AB+AD+AC+EB+ED+EC+BD+BC+DC
=(AE+EC)+(AB+BC)+(AD+DC)+AC+(EB+BD)+ED
=4AC+2ED=43y+2(2y-2x)=12y+4y-4x=16y-4x,
又∵AD=AE+ED=y+2y-2x=3y-2x,
∴根据题意,得16y-4x=7(3y-2x),即y=2x,
∴AD=3y-2x=4x,AC=3y=6x,
.
故选A.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,正比例函数y=2x的图象与反比例函数y=
的图象交于点A、B,AB=2
,(1)求k的值;
(2)若反比例函数y=
的图象上存在一点C,则当△ABC为直角三角形,请直接写出点C的坐标.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC中,∠ACB=90°,D为AB的中点,四边形BCED为平行四边形,DE,AC相交于F.连接DC,AE.
(1)试确定四边形ADCE的形状,并说明理由.
(2)若AB=16,AC=12,求四边形ADCE的面积.
(3)当△ABC满足什么条件时,四边形ADCE为正方形?请给予证明.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在Rt△ABC中,∠A=90°,点D,E分别在AC,BC上,且CD·BC=AC·CE,以E为圆心,DE长为半径作圆,⊙E经过点B,与AB,BC分别交于点F,G.
(1)求证:AC是⊙E的切线;
(2)若AF=4,CG=5,
①求⊙E的半径;
②若Rt△ABC的内切圆圆心为I,则IE= .

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在直角坐标系中,点A的坐标为(-2,0),OB=OA,且∠AOB=120°.
(1)求经过A、O、B三点的抛物线的解析式;
(2)在(1)中抛物线的对称轴上是否存在点C,使△OBC的周长最小?若存在,求出点C的坐标;若不存在,请说明理由;
(3)若点M为抛物线上一点,点N为对称轴上一点,是否存在点M、N使得A、O、M、N构成的四边形是平行四边形?若存在,求出点M的坐标;若不存在,请说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】张老师打算在小明和小白两位同学之间选一位同学参加数学竞赛,他收集了小明、小白近期10次数学考试成绩,并绘制了折线统计图(如图所示)
项目
众数
中位数
平均数
方差
最高分
小明
85
85
小白
70,100
85
100

(1)根据折线统计图,张老师绘制了不完整的统计表,请你补充完整统计表;
(2)你认为张老师会选择哪位同学参加比赛?并说明你的理由
-
科目: 来源: 题型:
查看答案和解析>>【题目】材料一:如图1,由课本91页例2画函数y=﹣6x与y=﹣6x+5可知,直线y=﹣6x+5可以由直线y=﹣6x向上平移5个单位长度得到由此我们得到正确的结论一:在直线L1:y=K1x+b1与直线L2:y=K2x+b2中,如果K1=K2 且b1≠b2 ,那么L1∥L2,反过来,也成立.
材料二:如图2,由课本92页例3画函数y=2x﹣1与y=﹣0.5x+1可知,利用所学知识一定能证出这两条直线是互相垂直的.由此我们得到正确的结论二:在直线L1:y=k1x+b1 与L2:y=k2x+b2 中,如果k1·k2=-1那么L1⊥L2,反过来,也成立
应用举例
已知直线y=﹣
x+5与直线y=kx+2互相垂直,则﹣
k=﹣1.所以k=6解决问题
(1)请写出一条直线解析式______,使它与直线y=x﹣3平行.
(2)如图3,点A坐标为(﹣1,0),点P是直线y=﹣3x+2上一动点,当点P运动到何位置时,线段PA的长度最小?并求出此时点P的坐标.

相关试题