【题目】如图,己知正方形ABCD的边长为4, P是对角线BD上一点,PE⊥BC于点E, PF⊥CD于点F,连接AP, EF,给出下列结论:①PD=
EC;②四边形PECF的周长为8;③△APD一定是等腰三角形;④AP=EF;⑤EF的最小值为
;⑥AP⊥EF,其中正确结论的序号为( )
![]()
A.①②④⑤⑥B.①②④⑤C.②④⑤D.②④
参考答案:
【答案】A
【解析】
①根据正方形的对角线平分对角的性质,得△PDF是等腰直角三角形,在Rt△DPF中,DP2=DF2+PF2=EC2+EC2=2EC2,求得DP=
EC.
②先证明四边形PECF为矩形,根据等腰直角三角形和矩形的性质可得其周长为2BC,则四边形PECF的周长为8;
③根据P的任意性可以判断△APD不一定是等腰三角形;
④由②可知,四边形PECF为矩形,则通过正方形的轴对称性,证明AP=EF;
⑤当AP最小时,EF最小,EF的最小值等于2
;
⑥证明∠PFH+∠HPF=90°,则AP⊥EF.
①如图,延长FP交AB与G,连PC,延长AP交EF与H,
![]()
∵GF∥BC,
∴∠DPF=∠DBC,
∵四边形ABCD是正方形
∴∠DBC=45°
∴∠DPF=∠DBC=45°,
∴∠PDF=∠DPF=45°,
∴PF=EC=DF,
∴在Rt△DPF中,DP2=DF2+PF2=EC2+EC2=2EC2,
∴DP=
EC.故①正确;
②∵PE⊥BC,PF⊥CD,∠BCD=90°,
∴四边形PECF为矩形,
∴四边形PECF的周长=2CE+2PE=2CE+2BE=2BC=8,故②正确;
③∵点P是正方形ABCD的对角线BD上任意一点,∠ADP=45度,
∴当∠PAD=45度或67.5度或90度时,△APD是等腰三角形,
除此之外,△APD不是等腰三角形,
故③错误.
④∵四边形PECF为矩形,
∴PC=EF,
由正方形为轴对称图形,
∴AP=PC,
∴AP=EF,
故④正确;
⑤由EF=PC=AP,
∴当AP最小时,EF最小,
则当AP⊥BD时,即AP=
BD=
×4
=2
时,EF的最小值等于2
,故⑤正确;
⑥∵GF∥BC,
∴∠AGP=90°,
∴∠BAP+∠APG=90°,
∵∠APG=∠HPF,
∴∠PFH+∠HPF=90°,
∴AP⊥EF,
故⑥正确;
本题正确的有:①②④⑤⑥;
故选:A.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知⊙O的半径为r,现要在圆中画一个的菱形ABCD,

(1)当顶点D也落在圆上时,四边形ABCD的形状是___________(写出一种四边形的名称),边长为_____________(用含r的代数式表示) .
(2)当菱形有三个顶点落在圆上,且边长为r时,请求出作为弦的那条对角线所对的圆周角的度数.
(3)在(2)的前提下,当其中一条对角线长为3时,求该菱形的高.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,四边形ABCD是正方形,点G是BC边上任意一点.DE⊥AG于点E,BF∥DE且交AG于点F.

(1)求证:AE=BF;
(2)如图2,如果点G是BC延长线上一点,其余条件不变,则线段AF、BF、EF有什么数量关系?请证明出你的结论.
-
科目: 来源: 题型:
查看答案和解析>>【题目】 已知关于x,y的方程组
的解是正数(1)求a的取值范围
(2)化简:|4a+5|-|a-4|
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,BD是边长为1的正方形ABCD的对角线,BE平分∠DBC交DC于点E,延长BC到点F,使CF=CE,连接DF,交BE的延长线于点G.
(1)求证:△BCE≌△DCF;
(2)求CF的长。

-
科目: 来源: 题型:
查看答案和解析>>【题目】 今年6月份,我市某果农收获荔枝30吨,香蕉13吨.现计划租用甲、乙两种货车共10辆将这批水果全部运往深圳,已知甲种货车可将荔枝4吨和香蕉1吨,乙种货车可将荔枝和香蕉各2吨.
(1)该果农安排甲、乙两种货车时有几种方案?请你帮助设计出来?
(2)若甲种货车每辆要付运输费2000元,乙种货车每辆要付运输1300元,则该果农应选择哪能种方案才能使运输费最少?最少动费是多少?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图①,在△ABC 中,AD平分∠BAC,AE⊥BC,∠B=40°,∠C=70°.
(1)求∠DAE的度数;
(2)如图②,若把“AE⊥BC”变成“点F在DA的延长线上,FE⊥BC”,其它条件不变,求∠DFE的度数.

相关试题