【题目】如图,BD是边长为1的正方形ABCD的对角线,BE平分∠DBC交DC于点E,延长BC到点F,使CF=CE,连接DF,交BE的延长线于点G.
(1)求证:△BCE≌△DCF;
(2)求CF的长。
![]()
参考答案:
【答案】(1)证明见解析;(2)
-1.
【解析】
(1)利用正方形的性质,由全等三角形的判定定理SAS,即可证得△BCE≌△DCF;
(2)由BE平分∠DBC,BD是正方形ABCD的对角线,及△BCE≌△DCF可得∠DEG=∠BEC,∠BGD=∠BCD=90°=∠BGF.从而得到△DBG≌△FBG,根据全等三角形的性质可得BF的长,最后由勾股定理及线段的和差,即可求得CF的长度.
(1)∵四边形ABCD为正方形,
∴CB=CD,∠BCD=90°,
∴∠DCF=180°-∠BCD=90°,
在△BCE和△DCF中,
,
∴△BCE≌△DCF;
(2)∵BD是正方形ABCD的对角线,
∠DBC=
∠ABC=
=45°,
∵BE平分∠DBC,
∴∠EBC=
∠DBC=22.5°,
由(1)知△BCE≌△DCF,
∴∠EBC=∠FDC=22.5°,
∵∠DEG=∠BEC,
∴∠BGD=∠BCD=90°=∠BGF,
在△DBG和△FBG中,
,
∴△DBG≌△FBG,
∴BD=BF,DG=FG,
∵BD=
,
∴BF=
,
∴CF=BF-BC=
-1.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,四边形ABCD是正方形,点G是BC边上任意一点.DE⊥AG于点E,BF∥DE且交AG于点F.

(1)求证:AE=BF;
(2)如图2,如果点G是BC延长线上一点,其余条件不变,则线段AF、BF、EF有什么数量关系?请证明出你的结论.
-
科目: 来源: 题型:
查看答案和解析>>【题目】 已知关于x,y的方程组
的解是正数(1)求a的取值范围
(2)化简:|4a+5|-|a-4|
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,己知正方形ABCD的边长为4, P是对角线BD上一点,PE⊥BC于点E, PF⊥CD于点F,连接AP, EF,给出下列结论:①PD=
EC;②四边形PECF的周长为8;③△APD一定是等腰三角形;④AP=EF;⑤EF的最小值为
;⑥AP⊥EF,其中正确结论的序号为( )
A.①②④⑤⑥B.①②④⑤C.②④⑤D.②④
-
科目: 来源: 题型:
查看答案和解析>>【题目】 今年6月份,我市某果农收获荔枝30吨,香蕉13吨.现计划租用甲、乙两种货车共10辆将这批水果全部运往深圳,已知甲种货车可将荔枝4吨和香蕉1吨,乙种货车可将荔枝和香蕉各2吨.
(1)该果农安排甲、乙两种货车时有几种方案?请你帮助设计出来?
(2)若甲种货车每辆要付运输费2000元,乙种货车每辆要付运输1300元,则该果农应选择哪能种方案才能使运输费最少?最少动费是多少?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图①,在△ABC 中,AD平分∠BAC,AE⊥BC,∠B=40°,∠C=70°.
(1)求∠DAE的度数;
(2)如图②,若把“AE⊥BC”变成“点F在DA的延长线上,FE⊥BC”,其它条件不变,求∠DFE的度数.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图△ABC中,AB=AC,∠BAC=58°,∠BAC的平分线与AB的垂直平分线交于点O,将∠C沿EF(E在BC上,F在AC上)折叠,使C与点O恰好重合,则∠OEB=_______

相关试题