【题目】为推广阳光体育“大课间”活动,某中学决定在学生中开设A:实心球,B:立定跳远,C:跳绳,D:跑步四种活动项目.为了了解学生对四种项目的喜欢情况,随机抽取了部分学生进行调查,并将调查结果绘制成如图①②的统计图.请结合图中的信息解答下列问题:
(1)在这项调查中,共调查了多少名学生?
(2)请计算本项调查中喜欢“立定跳远”的学生人数和所占百分比,并将两幅统计图中的B补充完整;
(3)若调查到喜欢“跳绳”的5名学生中有3名男生,2名女生.现从这5名学生中任意抽取2名学生.请用画树状图或列表的方法,求出刚好抽到同性别学生的概率.
![]()
参考答案:
【答案】(1)在这项调查中,共调查了150名学生;
(2)喜欢“立定跳远”的学生人数为45人,“立定跳远”的学生占被调查学生的30%;补全图形见解析;
(3)刚好抽到同性别学生的概率是
.
【解析】试题分析:(1)用A的人数除以所占的百分比,即可求出调查的学生数;(2)用抽查的总人数减去A、C、D的人数,求出喜欢“立定跳远”的学生人数,再除以被调查的学生数,求出所占的百分比,再画图即可;(3)用A表示男生,B表示女生,画出树形图,再根据概率公式进行计算即可.
试题解析:(1)根据题意,得:15÷10%=150(人),
答:在这项调查中,共调查了150名学生;
(2)本次调查中喜欢“立定跳远”的学生人数为:150﹣15﹣60﹣30=45(人),
“立定跳远”的学生占被调查学生百分比为:
×100%=30%,
补全图形如下:
![]()
(3)用A表示男生,B表示女生,画图如下:
![]()
共有20种情况,同性别学生的情况是8种,则刚好抽到同性别学生的概率是
=
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】抛物线y=x2+2x﹣a2(a为常数)的顶点在第_____象限.
-
科目: 来源: 题型:
查看答案和解析>>【题目】若点P(-m,3)与点Q(-5,n)关于y轴对称,则m,n的值分别为( )
A. -5,3 B. 5,3 C. 5,-3 D. -3,5
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知AB∥CD,分别探究下面四个图形中∠APC和∠PAB、∠PCD的关系,请从你所得四个关系中选出任意一个,说明你探究的结论的正确性.

(1);
(2);
(3);
(4) . -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在四边形ABCD中,AD∥BC,AD=12cm,BC=15cm,点P自点A向D以1cm/s的速度运动,到D点即停止.点Q自点C向B以2cm/s的速度运动,到B点即停止,点P,Q同时出发,设运动时间为t(s).

(1)用含t的代数式表示: AP=;DP=;BQ=;CQ= .
(2)当t为何值时,四边形APQB是平行四边形?
(3)当t为何值时,四边形PDCQ是平行四边形? -
科目: 来源: 题型:
查看答案和解析>>【题目】如图①,已知⊙O的半径为1,PQ是⊙O的直径,n个相同的正三角形沿PQ排成一列,所有正三角形都关于PQ对称,其中第一个△A1B1C1的顶点A1与点P重合,第二个△A2B2C2的顶点A2是B1C1与PQ的交点……最后一个△AnBnCn的顶点Bn,Cn在圆上.



(1)如图②,当n=1时,求正三角形的边长a1.
(2)如图③,当n=2时,求正三角形的边长a2.
(3)如图①,求正三角形的边长an(用含n的代数式表示).
-
科目: 来源: 题型:
查看答案和解析>>【题目】下列各式计算正确的是( )
A.3x+3y=6xyB.x+x=x2
C.-9y2+6y2=-3D.9a2b-9a2b=0
相关试题