【题目】已知关于
的二次方程
.
(1)若
,且此方程有一个根为
,求
的值;
(2)若
,判断此方程根的情况.
参考答案:
【答案】(1)m=3;(2)n=0 时,原方程有两个相等的实数根;n≠0 时,原方程无解.
【解析】
(1)将x=﹣1,n=1代入原方程,可求出m的值;
(2)代入m=2,根据方程的系数结合根的判别式,可得出△=﹣4n2,分n=0及n≠0两种情况找出此方程根的情况.
(1)将x=﹣1,n=1代入原方程,得:(﹣1)2﹣m+12+1=0,解得:m=3.
(2)当m=2时,原方程为x2+2x+n2+1=0,∴△=22﹣4×1×(n2+1)=﹣4n2.
当n=0时,△=﹣4n2=0,此时原方程有两个相等的实数根;
当n≠0时,△=﹣4n2<0,此时原方程无解.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,AB=AC,∠BAC=90°,D,E分别在边BC,AC上,∠ADE=45°.
求证:△ABD∽△DCE.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知,在△ABC中,∠A=90°,AB=AC,点D为BC的中点.
(1)如图①,若点E、F分别为AB、AC上的点,且DE⊥DF,则BE与AF的数量关系是 .
(2)若点E、F分别为AB、CA延长线上的点,且DE⊥DF,那么上述结论还成立吗?请利用图②说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】问题背景:如图1,在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,E,F分别是BC,CD上的点,且∠EAF=60°,探究图中线段BE,EF,FD之间的数量关系,小王同学探究此问题的方法是,延长FD到点G.使DG=BE.连结AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是 ;
探索延伸:如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°,E,F分别是BC,CD上的点,且∠EAF=
∠BAD,上述结论是否仍然成立,并说明理由;实际应用:如图3,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处,舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以70海里/小时的速度前进,舰艇乙沿北偏东50°的方向以90海里/小时的速度,前进2小时后,指挥中心观测到甲、乙两舰艇分别到达E,F处,且两舰艇之间的夹角为70°,试求此时两舰艇之间的距离.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知△ABC中,AB=4,AC=6,BC=9,点M为AB的中点,在线段AC上取点N,使△AMN与△ABC相似,求MN的长.

-
科目: 来源: 题型:
查看答案和解析>>【题目】下列说法错误的是( )
A.同时抛两枚普通正方体骰子,点数都是4的概率为
B.不可能事件发生机会为0
C.买一张彩票会中奖是可能事件
D.一件事发生机会为1.0%,这件事就有可能发生 -
科目: 来源: 题型:
查看答案和解析>>【题目】王伟准备用一段长30米的篱笆围成一个三角形形状的小圈,用于饲养家兔.已知第一条边长为a米,由于受地势限制,第二条边长只能是第一条边长的2倍多2米.
(1)请用a表示第三条边长;
(2)问第一条边长可以为7米吗?请说明理由,并求出a的取值范围;
(3)能否使得围成的小圈是直角三角形形状,且各边长均为整数?若能,说明你的围法;若不能,说明理由.
相关试题