【题目】要在宽为22米的九州大道AB两边安装路灯,路灯的灯臂CD长2米,且与灯柱BC成120°角,路灯采用圆锥形灯罩,灯罩的轴线DO与灯臂CD垂直,当灯罩的轴线DO通过公路路面的中心线时照明效果最佳,此时,路灯的灯柱BC高度应该设计为( )![]()
A.
米
B.
米
C.
米
D.
米
参考答案:
【答案】B
【解析】如图,延长OD,BC交于点P.![]()
∵∠ODC=∠B=90°,∠P=30°,OB=11米,CD=2米,
∴在直角△CPD中,DP=DCcot30°=2
m,PC=CD÷(sin30°)=4米,
∵∠P=∠P,∠PDC=∠B=90°,
∴△PDC∽△PBO,
∴
,
∴PB=
米,
∴BC=PB-PC=
米.
故答案为:B.
出现有直角的四边形时,应构造相应的直角三角形,利用相似求得PB、PC,再相减即可求得BC长.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,等腰直角△ABC中,AB=AC=8,以AB为直径的半圆O交斜边BC于D,则阴影部分的面积为(结果保留π)( )

A.
B.
C.
D.16 -
科目: 来源: 题型:
查看答案和解析>>【题目】如图①所示,已知,BC∥OA,∠B=∠A=100°,试解答下列问题:
(1)试说明:OB∥AC;

(2)如图②,若点E.F在BC上,且∠FOC=∠AOC,OE平分∠BOF.试求∠EOC的度数;

(3)在(2)小题的条件下,若左右平行移动AC,如图③,那么∠OCB:∠OFB的比值是否随之发生变化?若变化,试说明理由;若不变,求出这个比值.

(4)在(3)小题的条件下,当∠OEB=∠OCA时,试求∠OCA的度数.
-
科目: 来源: 题型:
查看答案和解析>>【题目】(1)观察推理:如图 1,△ABC 中,∠ACB=90°,AC=BC,直线 L 过点C,点 A,B 在直线 L 同侧,BD⊥L, AE⊥L,垂足分别为D,E
求证:△AEC≌△CDB
(2)类比探究:如图 2,Rt△ABC 中,∠ACB=90°,AC=4,将斜边 AB 绕点 A 逆时针旋转 90°至 AB’, 连接B’C,求△AB’C 的面积
(3)拓展提升:如图 3,等边△EBC 中,EC=BC=3cm,点 O 在 BC 上且 OC=2cm,动点 P 从点 E 沿射线EC 以 1cm/s 速度运动,连接 OP,将线段 OP 绕点O 逆时针旋转 120°得到线段 OF,设点 P 运动的时间为t 秒。
当t= 秒时,OF∥ED


若要使点F 恰好落在射线EB 上,求点P 运动的时间t
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在半径为6cm的⊙O中,点A是劣弧
的中点,点D是优弧
上一点,且∠D=30下列四个结论:①OA⊥BC;②BC=
cm;③cos∠AOB=
;④四边形ABOC是菱形.其中正确结论的序号是( )
A.①③
B.①②③④
C.①②④
D.②③④ -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,Rt△ABC中,AC=BC=2,正方形CDEF的顶点D、F分别在AC,BC边上,C,D两点不重合,设CD的长度为x,△ABC与正方形CDEF重叠部分的面积为y,则下列图象中能表示y与x之间的函数关系的是( )

A.
B.
C.
D.
-
科目: 来源: 题型:
查看答案和解析>>【题目】2019年是大家公认的
商用元年.移动通讯行业人员想了解
手机的使用情况,在某高校随机对500位大学生进行了问卷调查.下列说法正确的是( )A.该调查方式是普查
B.该调查中的个体是每一位大学生
C.该调查中的样本是被随机调查的500位大学生
手机的使用情况D.该调査中的样本容量是500位大学生
相关试题