【题目】(1)观察推理:如图 1,△ABC 中,∠ACB=90°,AC=BC,直线 L 过点C,点 A,B 在直线 L 同侧,BD⊥L, AE⊥L,垂足分别为D,E
求证:△AEC≌△CDB
(2)类比探究:如图 2,Rt△ABC 中,∠ACB=90°,AC=4,将斜边 AB 绕点 A 逆时针旋转 90°至 AB’, 连接B’C,求△AB’C 的面积
(3)拓展提升:如图 3,等边△EBC 中,EC=BC=3cm,点 O 在 BC 上且 OC=2cm,动点 P 从点 E 沿射线EC 以 1cm/s 速度运动,连接 OP,将线段 OP 绕点O 逆时针旋转 120°得到线段 OF,设点 P 运动的时间为t 秒。
当t= 秒时,OF∥ED
![]()
![]()
若要使点F 恰好落在射线EB 上,求点P 运动的时间t
参考答案:
【答案】(1)证明见解析;(2)8;(3)①1;②4s.
【解析】
(1)先利用等角的余角相等得到
,则可根据“AAS”证明
;
(2)作B′D⊥AC于D,如图2,先证明△B′AD≌△ABD得到B′D=AC=4,然后根据三角形面积公式计算;
(3)因为OF∥ED,所以∠POF+∠OPC=180°,因为∠POF=120°,所以∠OPC=60°,因为△BEC是等边三角形,所以∠BCE=60°=∠OPC,∠E=∠OPC=60°,△COP是等边三角形,PC=OC,即可求解;如图3,利用旋转的性质得
,OP=OF,再证明
得到PC=OB=1,则BP=BC+PC=4,然后计算点P运动的时间t.
(1)如图1,
∵BD⊥l,AE⊥l,
∴∠AEC=∠BDC=90°,
∵∠EAC+∠ACE=90°,∠BCD+∠ACE=90°,
∴∠EAC=∠BCD,
在△AEC和△CDB中
![]()
∴△AEC≌△CDB;
(2)作B′D⊥AC于D,如图2,
∵斜边AB绕点A逆时针旋转90°至AB′,
∴AB′=AB,∠B′AB=90°,
即∠B′AC+∠BAC=90°,
而∠B+∠CAB=90°,
∴∠B=∠B′AC,
在△B′AD和△ABD中
,
∴△B′AD≌△ABD,
∴B′D=AC=4,
∴△AB′C的面积=
×4×4=8;
(3)①由题意得:EP=t,则PC=3﹣t,
如图4,∵OF∥ED
∴∠POF+∠OPC=180°,
∵∠POF=120°,
∴∠OPC=60°,
∵△BEC是等边三角形,
∴∠BCE=60°=∠OPC,
∴∠E=∠OPC=60°,
∴△COP是等边三角形,
∴PC=OC=2,
∴2=3﹣t,
∴t=1,
即当t=1秒时,OF∥ED,
故答案为:1;
②如图3,∵OC=2,
∴OB=BC﹣OC=1,
∵线段OP绕点O逆时针旋转120°得到线段OF,
∴∠FOP=120°,OP=OF,
∴∠1+∠2=60°,
∵△BCE为等边三角形,
∴∠BCE=∠CBE=60°,
∴∠FBO=120°,∠PCO=120°,
∴∠2+∠3=∠BCE=60°,
∴∠1=∠3,
在△BOF和△CPO,
,
∴△BOF≌△CPO,
∴PC=OB=1,
∴BP=BC+PC=3+1=4,
∴点P运动的时间t=
=4s.
![]()
![]()
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD,等边△ABE.已知∠BAC=30°,EF⊥AB,垂足为F,连接DF.
(1)试说明AC=EF;
(2)求证:四边形ADFE是平行四边形.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,
,
,
,把
绕
点以每秒
的速度逆时针方向旋转一周,同时
绕
点以每秒
的速度逆时针方向旋转,当
停止旋转时
也随之停止旋转.设旋转后的两个角分别记为
、
,旋转时间为
秒.


(1)如图2,直线
垂直于
,将
沿直线
翻折至
,请你直接写出
的度数,不必说明理由;(2)如图1,在旋转过程中,若射线
与
重合时,求
的值;(3)如图1,在旋转过程中,当
时,直接写出
的值,不必说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】化简:整式与分式
(1)(2x+1)(2x﹣1)﹣(x+1)(3x﹣2)
(2)(
﹣x+1)÷
. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知∠AOB=45°,点P在∠AOB的内部.P′与P关于OA对称,P"与P关于OB对称,则O、P′、P"三点所构成的三角形是( )

A.直角三角形B.钝角三角形C.等腰直角三角形D.等边三角形
-
科目: 来源: 题型:
查看答案和解析>>【题目】在同一直角坐标系中,函数y=mx+m和y=﹣mx2+2x+2(m是常数,且m≠0)的图象可能是( )
A.
B.
C.
D.
-
科目: 来源: 题型:
查看答案和解析>>【题目】一次函数y=ax+b(a≠0)的图象与反比例函数y=
(k≠0)的图象相交于A,B两点,与y轴交于点C,与x轴交于点D,点D的坐标为(﹣1,0),点A的横坐标是1,tan∠CDO=2.过点B作BH⊥y轴交y轴于H,连接AH.
(1)求一次函数和反比例函数的解析式;
(2)求△ABH面积.
相关试题