【题目】如图四边形ABCD中,AD=DC,∠DAB=∠ACB=90°,过点D作DF⊥AC,垂足为F.DF与AB相交于E.设AB=15,BC=9,P是射线DF上的动点.当△BCP的周长最小时,DP的长为 . ![]()
参考答案:
【答案】12.5
【解析】解:∵∠ACB=90°,AB=15,BC=9,
∴AC=
=
=12,
∵AD=DC,DF⊥AC,
∴AF=CF=
AC=6,
∴点C关于DE的对称点是A,故E点与P点重合时△BCP的周长最小,
∴DP=DE,
∵DE⊥AC,BC⊥AC,
∴DE∥BC,
∴△AEF∽△ABC,
∴
,即
=
,解得AE=
,
∵DE∥BC,
∴∠AED=∠ABC,
∵∠DAB=∠ACB=90°,
∴Rt△AED∽Rt△CBA,
∴
=
,即
=
,解得DE=12.5,即DP=12.5.
故答案为:12.5.
先根据△ABC是直角三角形可求出AC的长,再根据AD=DC,DF⊥AC可求出AF=CF=
AC,故点C关于DE的对称点是A,故E点与P点重合时△BCP的周长最小,再根据DE⊥AC,BC⊥AC可知,DE∥BC,由相似三角形的判定定理可知△AEF∽△ABC,利用相似三角形的对应边成比例可得出AE的长,同理,利用△AED∽△CBA即可求出DE的长.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知二次函数y=ax2+bx+1(a<0)的图象过点(1,0)和(x1 , 0),且﹣2<x1<﹣1,下列5个判断中:①b<0;②b﹣a<0;③a>b﹣1;④a<﹣
;⑤2a<b+
,正确的是( )
A.①③
B.①②③
C.①②③⑤
D.①③④⑤ -
科目: 来源: 题型:
查看答案和解析>>【题目】在不透明的袋子中有黑棋子10枚和白棋子若干(它们除颜色外都相同),现随机从中摸出10枚记下颜色后放回,这样连续做了10次,记录了如下的数据:
次数
1
2
3
4
5
6
7
8
9
10
黑棋数
2
5
1
5
4
7
4
3
3
6
根据以上数据,解答下列问题:
(I)直接填空:第10次摸棋子摸到黑棋子的频率为 ;
(Ⅱ)试估算袋中的白棋子数量.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图:在x轴的上方,直角∠BOA绕原点O顺时针方向旋转,若∠BOA的两边分别与函数y=﹣
、y=
的图象交于B、A两点,则tanA= . 
-
科目: 来源: 题型:
查看答案和解析>>【题目】一块长方体木块的各棱长如图所示,一只蜘蛛在木块的一个顶点A处,一只苍蝇在这个长方体上和蜘蛛相对的顶点B处,蜘蛛急于捉住苍蝇,沿着长方体的表面向上爬.
(1)如果D是棱的中点,蜘蛛沿“AD→DB”路线爬行,它从A点爬到B点所走的路程为多少?
(2)你认为“AD→DB”是最短路线吗?如果你认为不是,请计算出最短的路程.

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知,在河的两岸有A,B两个村庄,河宽为4千米,A、B两村庄的直线距离 AB=10千米,A、B两村庄到河岸的距离分别为1千米、3千米,计划在河上修建一座桥MN垂直于两岸,M点为靠近A村庄的河岸上一点,求AM+BN的最小值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】(本小题满分9分)如图,四边形ABCD中AB∥CD,AB≠CD,BD=AC。

(1)求证:AD=BC;
(2)若E,F,G,H分别是AB,CD,AC,BD的中点,求证:线段EF与线段GH互相垂直平分。
相关试题