【题目】如图,在△ABC中,AB=AC,PE⊥AB,PF⊥AC,CD⊥AB,垂足分别为E、D、F,求证:PE﹣PF=CD. ![]()
参考答案:
【答案】证明:过C作CG⊥PE于G, ∵PE⊥AB,CD⊥AB,CG⊥PE,
∴四边形CDEG是矩形,
∴CD=EG,
∵PF⊥AC,
∴∠PFC=90°,
∵CG⊥PE,
∴∠PGC=90°,
∴∠PFC=∠PGC,
∵AB=AC,
∴∠ABC=∠ACB,
∵CG⊥PE,AB⊥PE,
∴CG∥AB,
∴∠ABC=∠PCG,
又∵∠ACB=∠PCF(对顶角相等),
∴∠PCG=∠PCF,
在△PCG和△PCF中,
,
∴△PCG≌△PCF(AAS),
∴PF=PG,
∴PE﹣PG=PE﹣PF=EG=CD,
则PE﹣PF=CD.![]()
【解析】过C作CG⊥PE于G,由三个角为直角的四边形为矩形得到CDEG为矩形,得到CD=EG,由一对直角相等,一对对顶角相等,且AC=AC,利用AAS得到三角形PCG与三角形PCF全等,利用全等三角形边相等得到PF=PG,由PE﹣PG=PE﹣PF=EG=CD,即可得证.
【考点精析】本题主要考查了等腰三角形的性质的相关知识点,需要掌握等腰三角形的两个底角相等(简称:等边对等角)才能正确解答此题.
-
科目: 来源: 题型:
查看答案和解析>>【题目】计算(﹣1)2的结果是( )
A. ﹣2B. 2C. ﹣1D. 1
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知AB∥CD,∠BCD的三等分线是CP,CQ,又CR⊥CP,若∠B=78°,则∠RCE=( )

A.66°
B.65°
C.58°
D.56° -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,所有正方形的中心均在坐标原点,且各边与x轴或y轴平行.从内到外,它们的边长依次为2,4,6,8,…,顶点依次用A1 , A2 , A3 , A4 , …表示,则顶点A55的坐标是( )

A.(13,13)
B.(﹣13,﹣13)
C.(14,14)
D.(﹣14,﹣14) -
科目: 来源: 题型:
查看答案和解析>>【题目】如图①,在正方形ABCD中,F是对角线AC上的一点,点E在BC的延长线上,且BF=EF.

(1)求证:BF=DF;
(2)求证:∠DFE=90°;
(3)如果把正方形ABCD改为菱形,其他条件不变(如图②),当∠ABC=50°时,∠DFE=度. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,点F是BC的中点,点E是线段AB的延长线上的一动点,连接EF,过点C作AB的平行线CD,与线段EF的延长线交于点D,连接CE、BD.

(1)求证:四边形DBEC是平行四边形.
(2)若∠ABC=120°,AB=BC=4,则在点E的运动过程中: ①当BE=时,四边形BECD是矩形,试说明理由;
②当BE=时,四边形BECD是菱形. -
科目: 来源: 题型:
查看答案和解析>>【题目】计算:(﹣2)2n+1+2(﹣2)2n=_____.
相关试题