【题目】已知△ABC和△ADE是等腰直角三角形,∠ACB=∠ADE=90°,F为BE的中点,连结DF,CF.
(1)如图①,当点D在AB上,点E在AC上,请直接写出此时线段DF,CF的数量关系和位置关系.
(2)如图②,在(1)的条件下将△ADE绕点A顺时针旋转45°,请你判断此时(1)中的结论是否仍然成立,并证明你的判断.
(3)如图③,在(1)的条件下将△ADE绕点A顺时针旋转90°,若AD=1,AC=2
,求此时线段CF的长(直接写出结果).
![]()
参考答案:
【答案】(1)证明见解析(2)(1)中的结论仍然成立(3) ![]()
【解析】试题分析:(1)根据“直角三角形斜边上的中线等于斜边的一半”可知DF=BF,根据∠DFE=2∠DCF,∠BFE=2∠BCF,得到∠EFD+∠EFB=2∠DCB=90°,DF⊥BF.
(2)延长DF交BC于点G,先证明△DEF≌△GCF,得到DE=CG,DF=FG,根据AD=DE,AB=BC,得到BD=BG又因为∠ABC=90°,所以DF=CF且DF⊥BF.
(3)延长DF交BA于点H,先证明△DEF≌△HBF,得到DE=BH,DF=FH,根据旋转条件可以△ADH为直角三角形,由△ABC和△ADE是等腰直角三角形,AC=2
,可以求出AB的值,进而可以根据勾股定理可以求出DH,再求出DF,由DF=BF,求出得CF的值.
试题解析:(1)∵∠ACB=∠ADE=90°,F为BE的中点,
∴DF=BF=
BE,CF=
BE,∴DF=CF.
∵△ABC是等腰直角三角形,∴∠ABC=45°.
∵BF=DF,∴∠DBF=∠BDF.
∵∠DFE=∠DBF+∠BDF,
∴∠DFE=2∠DBF.
同理,∠CFE=2∠CBF,
∴∠DFE+∠CFE=2∠DBF+2∠CBF=2∠ABC=90°,∴DF⊥CF.
(2)(1)中的结论仍然成立.
证明:如解图①,延长DF交BC于点G.
∵∠ADE=∠ACB=90°,∴DE∥BC.
∴∠DEF=∠GBF,∠EDF=∠BGF.
∵F为BE的中点,∴EF=BF.
∴△DEF≌△GBF(AAS).∴DE=GB,DF=GF.
∵AD=DE,∴AD=GB.
∵AC=BC,∴AC-AD=BC-GB,
即DC=GC.
∵∠ACB=90°,∴△DCG是等腰直角三角形.
∵DF=GF,∴DF=CF,DF⊥CF.
![]()
(3)如解图②,延长DF交BA于点H.
∵△ABC和△ADE是等腰直角三角形,
∴AC=BC,AD=DE,
∠AED=∠ABC=45°.
由旋转可知∠CAE=∠BAD=∠ACB=90°,
∴AE∥BC,
∴∠AEB=∠CBE,∴∠DEF=∠HBF.
∵F是BE的中点,∴EF=BF.
又∵∠DFE=∠HFB,
∴△DEF≌△HBF(ASA).∴ED=BH.
∵BC=AC=2
,∠ACB=90°,∴AB=4.
∵BH=ED=AD=1,∴AH=3.
∵∠BAD=90°,∴DH=
,
∴DF=![]()
.∴CF=
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】五个有理数的积是负数,则五个数中负因数的个数是( )
A.1
B.4
C.5
D.1或3或5 -
科目: 来源: 题型:
查看答案和解析>>【题目】如果将抛物线y=x2+2向右平移1个单位,那么所得新抛物线的表达式是( )
A.y=x2+3
B.y=(x﹣1)2+2
C.y=(x+1)2+2
D.y=x2+1 -
科目: 来源: 题型:
查看答案和解析>>【题目】已知(10x﹣31)(13x﹣17)﹣(13x﹣17)(3x﹣23)可因式分解成(ax+b)(7x+c),其中a、b、c均为整数,求a+b+c的值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,OE平分∠AOB,且EC⊥OA,ED⊥OB,垂足分别是C,D,连结CD与OE交于点F.
(1)求证:∠1=∠2.
(2)求证:OE是线段CD的垂直平分线.
(3)若∠1=30°,OC=2,求△OCD与△CDE的面积之差.
-
科目: 来源: 题型:
查看答案和解析>>【题目】在△AOB中,C,D分别是OA,OB边上的点,将△OCD绕点O顺时针旋转到△OC′D′.
(1)如图1,若∠AOB=90°,OA=OB,C,D分别为OA,OB的中点,证明:①AC′=BD′;②AC′⊥BD′;
(2)如图2,若△AOB为任意三角形且∠AOB=θ,CD∥AB,AC′与BD′交于点E,猜想∠AEB=θ是否成立?请说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】在5×6的方格图中
在图1中,将线段A1A2向右平移1个单位到B1B2 , 得到封闭图形A1A2B2B1(即阴影部分)
在图2中,将线段A1A2A3向右平移1个单位到B1B2B3 , 得到封闭图形A1A2A3B3B2B1(即阴影部分)
(1)在图3中,画出将折线A1A2A3A4向右平移1单位后的图形,并用阴影画出由这两条折线所围成的封闭图形.
(2)设上述三个图形中,矩形ABCD分别除去阴影部分后剩余部分的面积记为S1、S2、S3 , 则S1= ,S2= S3=
(3)如图4,在一块矩形草地上,有一条弯曲的柏油小路(小路任何地方的水平宽度都是1个单位),请你猜想草地部分的面积是 .(用含a、b的代数式表示)
相关试题