【题目】我市某林场计划购买甲、乙两种树苗共800株,甲种树苗每株24元,乙种树苗每株30元.相关资料表明:甲、乙两种树苗的成活率分别为85%、90%.
(1)若购买这两种树苗共用去21000元,则甲、乙两种树苗各购买多少株?
(2)若要使这批树苗的总成活率不低于88%,则甲种树苗至多购买多少株?
(3)在(2)的条件下,应如何选购树苗,使购买树苗的费用最低?并求出最低费用.
参考答案:
【答案】
(1)解:设购买甲种树苗x株,则乙种树苗y株,由题意得:
![]()
解得 ![]()
答:购买甲种树苗500株,乙种树苗300株
(2)解:设甲种树苗购买z株,由题意得:
85%z+90%(800﹣z)≥800×88%,
解得z≤320.
答:甲种树苗至多购买320株
(3)解:设购买两种树苗的费用之和为m,则
m=24z+30(800﹣z)=24000﹣6z,
在此函数中,m随z的增大而减小
所以当z=320时,m取得最小值,其最小值为24000﹣6×320=22080元
答:购买甲种树苗320株,乙种树苗480株,即可满足这批树苗的成活率不低于88%,又使购买树苗的费用最低,其最低费用为22080元
【解析】(1)根据关键描述语“购买甲、乙两种树苗共800株,”和“购买两种树苗共用21000元”,列出方程组求解.(2)先找到关键描述语“这批树苗的成活率不低于88%”,进而找到所求的量的等量关系,列出不等式求出甲种树苗的取值范围.(3)再根据题意列出购买两种树苗的费用之和与甲种树苗的函数关系式,根据一次函数的特征求出最低费用.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在ABCD中,E、F分别为边AB、CD的中点,BD是对角线,过点A作AG∥DB交CB的延长线于点G.

(1)求证:DE∥BF;
(2)若∠G=90°,求证:四边形DEBF是菱形. -
科目: 来源: 题型:
查看答案和解析>>【题目】A、B、C、D四个车站的位置如图所示,A、B两站之间的距离AB=a﹣b,B、C两站之间的距离BC=2a﹣b,B、D两站之间的距离BD=
a﹣2b﹣1.求:(1)A、C两站之间的距离AC;
(2)若A、C两站之间的距离AC=180km,求C、D两站之间的距离CD.

-
科目: 来源: 题型:
查看答案和解析>>【题目】(8分)先化简
,然后从-2≤x≤2的范围内选取一个合适的整数作为x的值代入求值. -
科目: 来源: 题型:
查看答案和解析>>【题目】阅读下面的情景对话,然后解答问题:


(1)根据“奇异三角形”的定义,请你判断小华提出的命题:“等边三角形一定是奇异三角形”是真命题还是假命题?
(2)在Rt△ABC中,∠C=90°,AB=c,AC=b,BC=a,且b>a,若Rt△ABC是奇异三角形,求a:b:c;
(3)如图,AB是⊙O的直径,C是⊙O上一点(不与点A、B重合),D是半圆
的中点,C、D在直径AB的两侧,若在⊙O内存在点E,使AE=AD,CB=CE. ①求证:△ACE是奇异三角形;
②当△ACE是直角三角形时,求∠AOC的度数. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,平面直角坐标系xOy中,点A的坐标为(﹣2,2),点B的坐标为(6,6),抛物线经过A、O、B三点,连接OA、OB、AB,线段AB交y轴于点E.

(1)求点E的坐标;
(2)求抛物线的函数解析式;
(3)点F为线段OB上的一个动点(不与点O、B重合),直线EF与抛物线交于M、N两点(点N在y轴右侧),连接ON、BN,当点F在线段OB上运动时,求△BON面积的最大值,并求出此时点N的坐标;
(4)连接AN,当△BON面积最大时,在坐标平面内求使得△BOP与△OAN相似(点B、O、P分别与点O、A、N对应)的点P的坐标. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在10×10的正方形网格中,每个小正方形的边长都为1,网格中有一个格点△ABC(即三角形的顶点都在格点上).
(1)在图中作出△ABC关于直线l对称的△A1B1C1;(要求:A与A1,B与B1,C与C1相对应)
(2)在(1)问的结果下,连接BB1,CC1,求四边形BB1C1C的面积.

相关试题