【题目】结果如此巧合!
下面是小颖对一道题目的解答.
题目:如图,Rt△ABC的内切圆与斜边AB相切于点D,AD=3,BD=4,求△ABC的面积.
解:设△ABC的内切圆分别与AC、BC相切于点E、F,CE的长为x.
根据切线长定理,得AE=AD=3,BF=BD=4,CF=CE=x.
根据勾股定理,得(x+3)2+(x+4)2=(3+4)2.
整理,得x2+7x=12.
所以S△ABC=
ACBC
=
(x+3)(x+4)
=
(x2+7x+12)
=
×(12+12)
=12.
小颖发现12恰好就是3×4,即△ABC的面积等于AD与BD的积.这仅仅是巧合吗?
请你帮她完成下面的探索.
已知:△ABC的内切圆与AB相切于点D,AD=m,BD=n.
可以一般化吗?
(1)若∠C=90°,求证:△ABC的面积等于mn.
倒过来思考呢?
(2)若ACBC=2mn,求证∠C=90°.
改变一下条件……
(3)若∠C=60°,用m、n表示△ABC的面积.
![]()
参考答案:
【答案】(1)证明见解析;(2)证明见解析;(3)S△ABC=
mn;
【解析】
(1)设△ABC的内切圆分别与AC、BC相切于点E、F,CE的长为x,仿照例题利用勾股定理得(x+m)2+(x+n)2=(m+n)2,再根据S△ABC=
AC×BC,即可证明S△ABC=mn.(2)由ACBC=2mn,得x2+(m+n)x=mn,因此AC2+BC2=(x+m)2+(x+n)2=AB2,利用勾股定理逆定理可得∠C=90°.(3)过点A作AG⊥BC于点G,在Rt△ACG中,根据条件求出AG、CG,又根据BG=BC-CG得到BG .在Rt△ABG中,根据勾股定理可得x2+(m+n)x=3mn,由此S△ABC=
BCAG=
mn.
设△ABC的内切圆分别与AC、BC相切于点E、F,CE的长为x,
根据切线长定理,得:AE=AD=m、BF=BD=n、CF=CE=x,
(1)如图1,
![]()
在Rt△ABC中,根据勾股定理,得:(x+m)2+(x+n)2=(m+n)2,
整理,得:x2+(m+n)x=mn,
所以S△ABC=
ACBC
=
(x+m)(x+n)
=
[x2+(m+n)x+mn]
=
(mn+mn)
=mn;
(2)由ACBC=2mn,得:(x+m)(x+n)=2mn,
整理,得:x2+(m+n)x=mn,
∴AC2+BC2=(x+m)2+(x+n)2
=2[x2+(m+n)x]+m2+n2
=2mn+m2+n2
=(m+n)2
=AB2,
根据勾股定理逆定理可得∠C=90°;
(3)如图2,过点A作AG⊥BC于点G,
![]()
(x+m),CG=ACcos60°=
(x+m),
∴BG=BC﹣CG=(x+n)﹣
(x+m),
在Rt△ABG中,根据勾股定理可得:[
(x+m)]2+[(x+n)﹣
(x+m)]2=(m+n)2,
整理,得:x2+(m+n)x=3mn,
∴S△ABC=
BCAG
=
×(x+n)
(x+m)
=
[x2+(m+n)x+mn]
=
×(3mn+mn)
=
mn.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,甲、乙两人以相同路线前往离学校12千米的地方参加植树活动.分析甲、乙两人前往目的地所行驶的路程S(千米)随时间t(分钟)变化的函数图象,解决下列问题:
(1)求出甲、乙两人所行驶的路程S甲、S乙与t之间的关系式;
(2)甲行驶10分钟后,甲、乙两人相距多少千米?

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知,如图△ABC中,AB=5,AC=3,则中线AD的取值范围是( )

A. 2<AD<8B. 2<AD<4C. 1<AD<4D. 1<AD<8
-
科目: 来源: 题型:
查看答案和解析>>【题目】小刚准备用一段长 44 米的篱笆围成三角形,用于养鸡。已知一条边长 x 米,第二条边是第一条边的 3 倍多 6 米。
(1)若能围成一个等腰三角形,求三边长
(2)若第一边长最短,写出 x 的取值范围 。
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC中,A、B两个顶点在
轴的上方,点C的坐标是(1,0).以点C为位似中心,在x轴的下方作△ABC的位似图形,并把△ABC的边长放大到原来的2倍,设点B的对应点B′的横坐标是a,则点B的横坐标是( )
A.
B.
C.
D. 
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知,△ABC中,∠A=60,BD,CE是△ABC的两条角平分线,BD,CE相交于点O,求证:BC=CD+BE.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,AC的垂直平分线MN分别交AB,AC于D,E.若AE=5,△BCD的周长17,求△ABC的周长.

相关试题