【题目】如图,数轴上有三个点A、B、C,它们可以沿着数轴左右移动,请回答:
![]()
(1)将点B向右移动三个单位长度后到达点D,点D表示的数是 ;
(2)移动点A到达点E,使B、C、E三点的其中任意一点为连接另外两点之间线段的中点,请你直接写出所有点A移动的距离和方向;
(3)若A、B、C三个点移动后得到三个互不相等的有理数,它们既可以表示为1,
,
的形式,又可以表示为0,
,
的形式,试求
,
的值.
参考答案:
【答案】(1)1;(2)①向左移动3个单位长度;②向右移动4.5 单位长度;③向右移动12个单位长度;(3)
=-1,
=1
【解析】
试题(1)将点B向右移动三个单位长度后到达点D,则点D表示的数为-2+3=1;
(2)分类讨论:当点A向左移动时,则点B为线段AC的中点;当点A向右移动并且落在BC之间,则A点为BC的中点;当点A向右移动并且在线段BC的延长线上,则C点为BA的中点,然后根据中点的定义分别求出对应的A点表示的数,从而得到移动的距离;
(3)根据题意得到a≠0,a≠b,则有b=1,a+b=0,a=
,即可求出a与b的值.
(1)由题意得点D表示的数是1;
(2)当点A向左移动时,则点B为线段AC的中点,
∵线段BC=3-(-2)=5,
∴点A距离点B有5个单位,
∴点A要向左移动3个单位长度;
当点A向右移动并且落在BC之间,则A点为BC的中点,
∴A点在B点右侧,距离B点2.5个单位,
∴点A要向右移动4.5 单位长度;
当点A向右移动并且在线段BC的延长线上,则C点为BA的中点,
∴点A要向右移动12个单位长度;
(3)依题意得:
≠0,
≠
,显然有
=1
+
=0,
=
,
解得
=-1,
=1的值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】今年,6月12日为端午节.在端午节前夕,三位同学到某超市调研一种进价为2元的粽子的销售情况.请根据小丽提供的信息,解答小华和小明提出的问题.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,小河上有一拱桥,拱桥及河道的截面轮廓线由抛物线的一部分ACB和
矩形的三边AE,ED,DB组成,已知河底ED是水平的,ED=16m,AE=8m,抛物线的顶点C到ED的
距离是11m,以ED所在的直线为x轴,抛物线的对称轴为y轴建立平面直角坐标系.
(1)求抛物线的解析式;
(2)已知从某时刻开始的40h内,水面与河底ED的距离h(单位:m)随时间t(单位:h)的变化满足函数
关系
且当水面到顶点C的距离不大于5m时,需禁止船只通行,请通过计算说明:在这一时段内,需多少小时禁止船只通行?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图①所示是一个长为2m,宽为2n的长方形,沿图中虚线用剪刀均分成四个小长方形,然后按图②的方式拼成一个正方形。
(1)你认为图②中阴影部分的正方形的边长等于________.
(2)请用两种不同的方法列代数式表示图②中阴影部分的面积。
方法①___________________________________.
方法②___________________________________.
(3)观察图②,试写出
,
,
这三个代数式之间的等量关系 .(4)根据(3)题中的等量关系,解决如下问题:若
,
,则求
的值。
-
科目: 来源: 题型:
查看答案和解析>>【题目】抛物线y=
x2+bx+c与x轴交于A(5,0)、B(-1,0)两点,过点A作直线AC⊥x轴,交直线y=2x于点C.(1)求该抛物线的解析式;
(2)求点A关于直线y=2x的对称点A′的坐标,判定点A′是否在抛物线上,并说明理由;
(3)点P是抛物线上一动点,过点P作y轴的平行线,交线段CA′于点M,是否存在这样的点P,使四边形PACM是平行四边形?若存在,求出点P的坐标;若不存在,请说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】某地举行龙舟赛,甲、乙两队在比赛时,路程
(米)与时间
(分钟)的函数图象如图所示,根据函数图象填空和解答问题:
(1)最先到达终点的是_________队,比另一队领先_________分钟到达;
(2)在比赛过程中,甲队的速度始终保持为_________米/分;而乙队在第________分钟后第一次加速,速度变为_________米/分,在第__________分钟后第二次加速;
(3)假设乙队在第一次加速后,始终保持这个速度继续前进,那么甲、乙两队谁先到达终点?请说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图是由若干个正方体形状的木块堆成的,平放于桌面上。其中,上面正方体的下底面的四个顶点恰是下面相邻正方体的上底面各边的中点,如果最下面的正方体的棱长为1.

(1)当只有两个正方体放在一起时,这两个正方体露在外面的面积和是 ;
(2)当这些正方体露在外面的面积和超过
时,那么正方体的个数至少是多少?(3)按此规律下去,这些正方体露在外面的面积会不会一直增大?如果会,请说明理由;如果不会,请求出不会超过哪个数值?(提示:所有正方体侧面面积加上所有正方体上面露出的面积之和,就是需求的面积,从简单入手,归纳规律.)
相关试题