【题目】完成下面的证明过程:
已知:如图,∠D=110°,∠EFD=70°,∠1=∠2,
求证:∠3=∠B
![]()
证明:∵∠D=110°, ∠EFD=70°(已知)
∴∠D+∠EFD=180°
∴AD∥______( )
又∵∠1=∠2(已知)
∴_____∥BC ( 内错角相等,两直线平行)
∴EF∥_____ ( )
∴∠3=∠B(两直线平行,同位角相等)
参考答案:
【答案】详见解析.
【解析】
求出∠D+∠EFD=180°,根据平行线的判定推出AD∥EF,AD∥BC,即可推出答案.
证明:∵∠D=110°, ∠EFD=70°(已知)
∴∠D+∠EFD=180°
∴AD∥_EF_( 同旁内角互补,两直线平行 )
又∵∠1=∠2(已知)
∴AD∥BC ( 内错角相等,两直线平行)
∴EF∥_BC_ ( 平行于同一直线的两直线平行 )
∴∠3=∠B(两直线平行,同位角相等) .
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在直角坐标系中,直线y=x+m与y=
在第一象限交于点A,且与x轴交于点C,AB⊥x轴,垂足为B,且S△AOB=1.
(1)求m的值;
(2)求△ABC的面积. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,如果以正方形ABCD的对角线AC为边作第二个正方形ACEF,再以对角线AE为边作第三个正方形AEGH,如此下去,……,已知正方形ABCD的面积为S1为1,按上述方法所作的正方形的面积依次为S2,S3,……………,则Sn(n为正整数),那么第n个正方形的面积Sn等于( )

A.
B.
C.
D. 
-
科目: 来源: 题型:
查看答案和解析>>【题目】某地区为了进一步缓解交通拥堵问题,决定修建一条长为7千米的公路.如果平均每天的修建费y(万元)与修建天数x(天)在30≤x≤12 0之间时具有一次函数的关系,如下表所示.
x
50
60
90
120
y
40
38
32
26
(1)求y关于x的函数关系式;
(2)后来在修建的过程中计划发生改变,政府决定多修3千米,因此在没有增减建设力量的情况下,修完这条路比计划晚了15天,求原计划每天的修建费. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知在Rt△ABC中,∠ABC=90°,AB=BC, BO是AC边上的中线,点P,D分别在AO和BC上,PB=PD,DE⊥AC于点E,


(1)求证:△BPO≌△PDE.
(2)若PB平分∠ABO,其余条件不变.求证:AP=CD.
(先将图形补充完整,然后再证明)
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,一张矩形纸片ABCD,其中AD=8cm,AB=6cm,先沿对角线BD对折,点C落在点C′的位置,BC′交AD于点G.

(1)求证:AG=C′G;
(2)如图2,再折叠一次,使点D与点A重合,得折痕EN,EN交AD于点M,求EM的长.
-
科目: 来源: 题型:
查看答案和解析>>【题目】在矩形ABCD中,点P在AD上,AB=2,AP=1.将直角尺的顶点放在P处,直角尺的两边分别交AB,BC于点E,F,连接EF(如图①).

(1)当点E与点B重合时,点F恰好与点C重合(如图②),求PC的长;
(2)探究:将直尺从图②中的位置开始,绕点P顺时针旋转,当点E和点A重合时停止.在这个过程中,请你观察、猜想,并解答:
①tan∠PEF的值是否发生变化?请说明理由;
②直接写出从开始到停止,线段EF的中点经过的路线长.
相关试题