【题目】在矩形ABCD中,点P在AD上,AB=2,AP=1.将直角尺的顶点放在P处,直角尺的两边分别交AB,BC于点E,F,连接EF(如图①).![]()
(1)当点E与点B重合时,点F恰好与点C重合(如图②),求PC的长;
(2)探究:将直尺从图②中的位置开始,绕点P顺时针旋转,当点E和点A重合时停止.在这个过程中,请你观察、猜想,并解答:
①tan∠PEF的值是否发生变化?请说明理由;
②直接写出从开始到停止,线段EF的中点经过的路线长.![]()
参考答案:
【答案】
(1)解:在矩形ABCD中,
∠A=∠D=90°,
AP=1,CD=AB=2,则PB=
,
∴∠ABP+∠APB=90°,
又∵∠BPC=90°,
∴∠APB+∠DPC=90°,
∴∠ABP=∠DPC,
∴△APB∽△DCP,
∴
=
,即
=
,
∴PC=2 ![]()
(2)解:①tan∠PEF的值不变.
理由:过F作FG⊥AD,垂足为G,
![]()
则四边形ABFG是矩形,
∴∠A=∠PGF=90°,GF=AB=2,
∴∠AEP+∠APE=90°,
又∵∠EPF=90°,
∴∠APE+∠GPF=90°,
∴∠AEP=∠GPF,
∴△APE∽△GPF,
∴
=
=
=2,
∴Rt△EPF中,tan∠PEF=
=2,
∴tan∠PEF的值不变;
②设线段EF的中点为O,连接OP,OB,
![]()
∵在Rt△EPF中,OP=
EF,
在Rt△EBF中,OB=
EF,
∴OP=OB=
EF,
∴O点在线段BP的垂直平分线上,
∴线段EF的中点经过的路线长为O1O2=
PC= ![]()
【解析】1)由勾股定理求PB,利用互余关系证明△APB∽△DCP,利用相似比求PC;
(2)①tan∠PEF的值不变.过F作FG⊥AD,垂足为G,同(1)的方法证明△APB∽△DCP,得相似比,再利用锐角三角函数的定义求值;
②如图3,画出起始位置和终点位置时,线段EF的中点O1,O2,连接O1O2,线段O1O2即为线段EF的中点经过的路线长,也就是△BPC的中位线.
【考点精析】解答此题的关键在于理解勾股定理的概念的相关知识,掌握直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2,以及对三角形中位线定理的理解,了解连接三角形两边中点的线段叫做三角形的中位线;三角形中位线定理:三角形的中位线平行于三角形的第三边,且等于第三边的一半.
-
科目: 来源: 题型:
查看答案和解析>>【题目】完成下面的证明过程:
已知:如图,∠D=110°,∠EFD=70°,∠1=∠2,
求证:∠3=∠B

证明:∵∠D=110°, ∠EFD=70°(已知)
∴∠D+∠EFD=180°
∴AD∥______( )
又∵∠1=∠2(已知)
∴_____∥BC ( 内错角相等,两直线平行)
∴EF∥_____ ( )
∴∠3=∠B(两直线平行,同位角相等)
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知在Rt△ABC中,∠ABC=90°,AB=BC, BO是AC边上的中线,点P,D分别在AO和BC上,PB=PD,DE⊥AC于点E,


(1)求证:△BPO≌△PDE.
(2)若PB平分∠ABO,其余条件不变.求证:AP=CD.
(先将图形补充完整,然后再证明)
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,一张矩形纸片ABCD,其中AD=8cm,AB=6cm,先沿对角线BD对折,点C落在点C′的位置,BC′交AD于点G.

(1)求证:AG=C′G;
(2)如图2,再折叠一次,使点D与点A重合,得折痕EN,EN交AD于点M,求EM的长.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,三个村庄A,B,C之间的距离分别为
,已知A,B两村之间已修建了一条笔直的村级公路AB,为了实现村村通公路,现在要从C村修一条笔直公路CD直达AB,已知公路的造价为10000元/km,则修这条公路的最低造价是多少元?
-
科目: 来源: 题型:
查看答案和解析>>【题目】在下图的直角坐标系中,将△ABC平移后得到△A’B’C’,它们的个顶点坐标如下表所示
△ABC
A(0,0)
B(3,0)
C(5,5)
△A'B'C'
A'(4,2)
B'(7,b)
C'(c,d)
(1)观察表中各对应点坐标的变化,并填空:△ABC向______平移______个单位长度,再向______平移______个单位长度可以得到△A'B'C';
(2)在坐标系中画出△ABC及平移后的△A'B'C';
(3)求出△A'B'C'的面积.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,二次函数y=ax2+bx+2的图象与x轴交于点A(﹣1,0)、B(4,0),与y轴交于点C.

(1)a=;b=;
(2)点P为该函数在第一象限内的图象上的一点,过点P作PQ⊥BC于点Q,连接PC.
①求线段PQ的最大值;
②若以P、C、Q为顶点的三角形与△ABC相似,求点P的坐标.
相关试题