【题目】如图,以△ABC的边AB为直径作⊙O,交边BC于点D,点E是
上一点. ![]()
(1)若AC为⊙O的切线,试说明:∠AED=∠CAD;
(2)若AE平分∠BAD,延长DE、AB交于点P,若PB=BO,DE=2,求PD的长.
参考答案:
【答案】
(1)证明:∵AB是⊙O的直径,
∴∠ADB=90°,
∵AC是切线,
∴∠CAB=90°,
∴∠DAB+∠DBA=90°,∠DAB+∠CAD=90°,
∴∠CAD=∠DBA,
∵∠DBA=∠AED,
∴∠AED=∠CAD.
(2)解:连接OE.
![]()
∵AE平分∠BAD,
∴∠DAE=∠EAB,
∵OA=OE,
∴∠AEO=∠EAB,
∴∠DAE=∠AEO,
∴AD∥OE,
∴
=
=
,
∴DP=3DE=6.
【解析】(1)首先证明∠CAD=∠B,根据∠AED=∠B即可证明结论.(2)只要证明AD∥OE,可得
=
=
,由此即可解决问题.
【考点精析】本题主要考查了切线的性质定理的相关知识点,需要掌握切线的性质:1、经过切点垂直于这条半径的直线是圆的切线2、经过切点垂直于切线的直线必经过圆心3、圆的切线垂直于经过切点的半径才能正确解答此题.
-
科目: 来源: 题型:
查看答案和解析>>【题目】“十一”长假期间,小张和小李决定骑自行车外出旅游,两人相约一早从各自家中出发,已知两家相距10千米,小张出发必过小李家.
(1)若两人同时出发,小张车速为20千米,小李车速为15千米,经过多少小时能相遇?
(2)若小李的车速为10千米,小张提前20分钟出发,两人商定小李出发后半小时二人相遇,则小张的车速应为多少?
-
科目: 来源: 题型:
查看答案和解析>>【题目】(如图(1),一扇窗户垂直打开,即OM⊥OP,AC是长度不变的滑动支架,其中一端固定在窗户的点A处,另一端在线段OP上滑动,将窗户OM按图示方向向内旋转45°到达ON位置,如图(2),此时,点A、C的对应位置分别是点B、D,测量出∠ODB为37°,点D到点O的距离为28cm.

(1)求B点到OP的距离.
(2)求滑动支架AC的长. (参考数据:sin37°=
,cos37°=
,tan37°=
) -
科目: 来源: 题型:
查看答案和解析>>【题目】新化到长沙的距离约为200km,小王开着小轿车,张师傅开着大货车都从新化去长沙,小王比张师傅晚出发20分钟,最后两车同时到达长沙.已知小轿车的速度是大货车速度的1.2倍,求小轿车和大货车的速度各是多少?
-
科目: 来源: 题型:
查看答案和解析>>【题目】数学活动课上,某学习小组对有一内角(∠BAD)为120°的平行四边形ABCD,将一块含60°的直角三角板如图放置在平行四边形ABCD所在平面内旋转,且60°角的顶点始终与点C重合,较短的直角边和斜边所在的两直线分别交线段AB,AD于点E,F(不包括线段的端点).
(1)初步尝试
如图1,若AD=AB,求证:①△BCE≌△ACF,②AE+AF=AC;
(2)类比发现
如图2,若AD=2AB,过点C作CH⊥AD于点H,求证:AE=2FH;
(3)深入探究:在(2)的条件下,学习小组某成员探究发现AE+2AF=
AC,试判断结论是否正确,并说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】一架飞机在两城之间飞行,风速为24千米/小时,顺风飞行需2小时50分,逆风飞行需要3小时.
(1)求无风时飞机的飞行速度;
(2)求两城之间的距离.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知:如图,已知△ABC 中,其中 A(0,﹣2),B(2,﹣4),C(4,﹣1).
(1)画出与△ABC 关于 y 轴对称的图形△A1B1C1;
(2)写出△A1B1C1 各顶点坐标;
(3)求△ABC 的面积.

相关试题